These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35013479)

  • 1. Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows.
    Jiang C; Zhang Y
    Sci Rep; 2022 Jan; 12(1):396. PubMed ID: 35013479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons between full molecular dynamics simulation and Zhang's multiscale scheme for nanochannel flows.
    Jiang C; Zhang Y
    J Mol Model; 2024 Sep; 30(10):334. PubMed ID: 39283552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions.
    Soong CY; Yen TH; Tzeng PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036303. PubMed ID: 17930337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlimiting current near a nanochannel a new insight using molecular dynamics simulations.
    Manikandan D; Nandigana VVR
    Sci Rep; 2021 Jul; 11(1):15216. PubMed ID: 34312433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phenomenological continuum model for force-driven nano-channel liquid flows.
    Ghorbanian J; Celebi AT; Beskok A
    J Chem Phys; 2016 Nov; 145(18):184109. PubMed ID: 27846688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the temperature distribution behavior and flow parameters of argon fluid in a nanochannel with changing dimensions of the obstacle using the molecular dynamics (MD) method.
    Akbari OA; Shirani E; Saghafian M
    Heliyon; 2024 Jan; 10(2):e24065. PubMed ID: 38298619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of momentum accommodation coefficients with pressure drop in a nanochannel.
    Prabha SK; C P AG; Sathian SP
    Phys Rev E; 2020 Aug; 102(2-1):023303. PubMed ID: 32942364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evanescent wave-based particle tracking velocimetry for nanochannel flows.
    Kazoe Y; Iseki K; Mawatari K; Kitamori T
    Anal Chem; 2013 Nov; 85(22):10780-6. PubMed ID: 24143898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge inversion and flow reversal in a nanochannel electro-osmotic flow.
    Qiao R; Aluru NR
    Phys Rev Lett; 2004 May; 92(19):198301. PubMed ID: 15169453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Investigation of Diffusioosmotic Flow in a Tapered Nanochannel.
    Chanda S; Tsai PA
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic Effects on Sample Concentration at the Interface of a Micro/Nanochannel.
    Chun H
    Anal Chem; 2017 Sep; 89(17):8924-8930. PubMed ID: 28723105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport behavior of pressure-driven electrolyte solution through a surface-charged nanochannel.
    Cao G
    Nanotechnology; 2020 Oct; 31(44):445404. PubMed ID: 32702681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-equilibrium all-atom molecular dynamics simulations of free and tethered DNA molecules in nanochannel shear flows.
    Wang GM; Sandberg WC
    Nanotechnology; 2007 Apr; 18(13):135702. PubMed ID: 21730387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Effect on Oil Transportation in Nanochannel: a Molecular Dynamics Study.
    Zheng H; Du Y; Xue Q; Zhu L; Li X; Lu S; Jin Y
    Nanoscale Res Lett; 2017 Dec; 12(1):413. PubMed ID: 28622718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of Water Flow in a Nanochannel with a Sudden Contraction or Expansion.
    Zhang T; Zhang B; Zhao Y; Javadpour F; He X; Ge F; Wu J; Zhang D
    Langmuir; 2022 May; 38(21):6720-6730. PubMed ID: 35584361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients.
    Prabha SK; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method.
    Cui J; Liu Y; Fu BM
    Biomech Model Mechanobiol; 2020 Feb; 19(1):21-35. PubMed ID: 31256275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a lattice Boltzmann method in a complex nanoflow.
    Suga K; Takenaka S; Ito T; Kaneda M; Kinjo T; Hyodo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016701. PubMed ID: 20866755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Insights into the Regulatable Interfacial Property and Flow Behavior of Confined Ionic Liquids in Graphene Nanochannels.
    Wang Y; Wang C; Zhang Y; Huo F; He H; Zhang S
    Small; 2019 Jul; 15(29):e1804508. PubMed ID: 30680916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.