These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35013940)

  • 21. Species specific detection of Trypanosoma cruzi and Trypanosoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA.
    Vallejo GA; Guhl F; Chiari E; Macedo AM
    Acta Trop; 1999 Mar; 72(2):203-12. PubMed ID: 10206119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacy of Recombinase Polymerase Amplification to Diagnose Trypanosoma cruzi Infection in Dogs with Cardiac Alterations from an Endemic Area of Mexico.
    Jimenez-Coello M; Shelite T; Castellanos-Gonzalez A; Saldarriaga O; Rivero R; Ortega-Pacheco A; Acevedo-Arcique C; Amaya-Guardia K; Garg N; Melby P; Travi BL
    Vector Borne Zoonotic Dis; 2018 Aug; 18(8):417-423. PubMed ID: 29768103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trypanosomatid Richness Among Rats, Opossums, and Dogs in the Caatinga Biome, Northeast Brazil, a Former Endemic Area of Chagas Disease.
    Dario MA; Furtado C; Lisboa CV; de Oliveira F; Santos FM; D'Andrea PS; Roque ALR; Xavier SCDC; Jansen AM
    Front Cell Infect Microbiol; 2022; 12():851903. PubMed ID: 35795183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes.
    Pavia PX; Vallejo GA; Montilla M; Nicholls RS; Puerta CJ
    Rev Inst Med Trop Sao Paulo; 2007; 49(1):23-30. PubMed ID: 17384816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amplification of a specific repetitive DNA sequence for Trypanosoma rangeli identification and its potential application in epidemiological investigations.
    Vargas N; Souto RP; Carranza JC; Vallejo GA; Zingales B
    Exp Parasitol; 2000 Nov; 96(3):147-59. PubMed ID: 11162365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leishmania spp. and/or Trypanosoma cruzi diagnosis in dogs from endemic and nonendemic areas for canine visceral leishmaniasis.
    Troncarelli MZ; Camargo JB; Machado JG; Lucheis SB; Langoni H
    Vet Parasitol; 2009 Oct; 164(2-4):118-23. PubMed ID: 19625128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tamandua tetradactyla Linnaeus, 1758 (Myrmecophagidae) and Rhodnius robustus Larrousse, 1927 (Triatominae) infection focus by Trypanosoma rangeli Tejera, 1920 (Trypanosomatidae) in Attalea phalerata Mart. ex Spreng (Arecaceae) palm tree in the Brazilian Amazon.
    Dias FB; Quartier M; Romaña CA; Diotaiuti L; Harry M
    Infect Genet Evol; 2010 Dec; 10(8):1278-81. PubMed ID: 20619359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Panstrongylus geniculatus and four other species of triatomine bug involved in the Trypanosoma cruzi enzootic cycle: high risk factors for Chagas' disease transmission in the Metropolitan District of Caracas, Venezuela.
    Carrasco HJ; Segovia M; Londoño JC; Ortegoza J; Rodríguez M; Martínez CE
    Parasit Vectors; 2014 Dec; 7():602. PubMed ID: 25532708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infected dogs as a risk factor in the transmission of human Trypanosoma cruzi infection in western Venezuela.
    Crisante G; Rojas A; Teixeira MM; Añez N
    Acta Trop; 2006 Jul; 98(3):247-54. PubMed ID: 16797466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus.
    Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ
    Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Dario MA; Lisboa CV; Xavier SCDC; D'Andrea PS; Roque ALR; Jansen AM
    Front Cell Infect Microbiol; 2022; 12():812708. PubMed ID: 35223545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The potential risk of enzootic Trypanosoma cruzi transmission inside four training and re-training military battalions (BITER) in Colombia.
    Cantillo-Barraza O; Torres J; Hernández C; Romero Y; Zuluaga S; Correa-Cárdenas CA; Herrera G; Rodríguez O; Alvarado MT; Ramírez JD; Méndez C
    Parasit Vectors; 2021 Oct; 14(1):519. PubMed ID: 34625109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of conventional and real-time multiplex PCR-based assays for estimation of natural infection rates and Trypanosoma cruzi load in triatomine vectors.
    Moreira OC; Verly T; Finamore-Araujo P; Gomes SAO; Lopes CM; de Sousa DM; Azevedo LR; da Mota FF; d'Avila-Levy CM; Santos-Mallet JR; Britto C
    Parasit Vectors; 2017 Aug; 10(1):404. PubMed ID: 28851417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Trypanosoma cruzi DNA in false negative samples of collected triatomines, xenodiagnosis material, and biopsies of experimentally infected animals.
    Herrera L; Aguilar CM; Morocoima A; Viettri M; Lares M; Ferrer E
    Int Microbiol; 2021 May; 24(2):141-147. PubMed ID: 33156443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trypanosoma cruzi and Leishmania infantum chagasi Infection in Wild Mammals from Maranhão State, Brazil.
    da Costa AP; Costa FB; Soares HS; Ramirez DG; Mesquita ET; Gennari SM; Marcili A
    Vector Borne Zoonotic Dis; 2015 Nov; 15(11):656-66. PubMed ID: 26501369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevalence of Trypanosoma cruzi in dogs (Canis familiaris) and triatomines during 2008 in a sanitary region of the State of Mexico, Mexico.
    Barbabosa-Pliego A; Gil PC; Hernández DO; Aparicio-Burgos JE; de Oca-Jiménez RM; Martínez-Castañeda JS; Ochoa-García L; Guzmán-Bracho C; Estrada-Franco JG; Garg NJ; Chagoyán JC
    Vector Borne Zoonotic Dis; 2011 Feb; 11(2):151-6. PubMed ID: 20575648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Chile.
    Ihle-Soto C; Costoya E; Correa JP; Bacigalupo A; Cornejo-Villar B; Estadella V; Solari A; Ortiz S; Hernández HJ; Botto-Mahan C; Gorla DE; Cattan PE
    PLoS Negl Trop Dis; 2019 Feb; 13(2):e0007170. PubMed ID: 30768613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease in Brazil.
    Xavier SC; Roque AL; Bilac D; de Araújo VA; da Costa Neto SF; Lorosa ES; da Silva LF; Jansen AM
    PLoS Negl Trop Dis; 2014 May; 8(5):e2878. PubMed ID: 24854494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trypanosomes of vectors and domestic dogs in Trypanosoma cruzi transmission areas from Brazilian southwestern amazon: New mammalian host for Trypanosoma janseni.
    Malavazi PFNS; Daudt C; Melchior LAK; Meneguetti DUO; Xavier SCC; Jansen AM; Souza SF; Roque ALR
    Acta Trop; 2020 Oct; 210():105504. PubMed ID: 32526167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maintenance of
    Porfirio GEO; Santos FM; de Macedo GC; Barreto WTG; Campos JBV; Meyers AC; André MR; Perles L; de Oliveira CE; Xavier SCDC; Andrade GB; Jansen AM; Herrera HM
    Int J Parasitol Parasites Wildl; 2018 Dec; 7(3):398-404. PubMed ID: 30370220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.