These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35014053)

  • 1. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes.
    Das S; Das S; Ghangrekar MM
    J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.
    Sharma S; Singh B; Manchanda VK
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.
    Rezania S; Taib SM; Md Din MF; Dahalan FA; Kamyab H
    J Hazard Mater; 2016 Nov; 318():587-599. PubMed ID: 27474848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater.
    Znad H; Awual MR; Martini S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants.
    Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future.
    Goswami RK; Agrawal K; Shah MP; Verma P
    Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential use of algae for heavy metal bioremediation, a critical review.
    Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP
    J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents?
    Ranjbar S; Malcata FX
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algae as a green technology for heavy metals removal from various wastewater.
    Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH
    World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals removal from industrial wastewater of Biskra (Algeria) by Arundo donax and Phragmites australis.
    Badache S; Seghairi N
    Environ Monit Assess; 2024 Jul; 196(8):703. PubMed ID: 38967833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging role of microalgae in heavy metal bioremediation.
    Manikandan A; Suresh Babu P; Shyamalagowri S; Kamaraj M; Muthukumaran P; Aravind J
    J Basic Microbiol; 2022 Mar; 62(3-4):330-347. PubMed ID: 34724223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals removal by algae and usage of activated metal-enriched biomass as cathode catalyst for improving performance of photosynthetic microbial fuel cell.
    Das S; Kumar S; Kumar Mehta A; Ghangrekar MM
    Bioresour Technol; 2024 Aug; 406():131038. PubMed ID: 38925410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems.
    Nguyen TQ; Sesin V; Kisiala A; Emery RJN
    Environ Toxicol Chem; 2021 Jan; 40(1):7-22. PubMed ID: 33074580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater.
    Khan AA; Gul J; Naqvi SR; Ali I; Farooq W; Liaqat R; AlMohamadi H; Štěpanec L; Juchelková D
    Chemosphere; 2022 Nov; 306():135565. PubMed ID: 35793745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microalgae - A promising tool for heavy metal remediation.
    Suresh Kumar K; Dahms HU; Won EJ; Lee JS; Shin KH
    Ecotoxicol Environ Saf; 2015 Mar; 113():329-52. PubMed ID: 25528489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal.
    Yeheyo HA; Ealias AM; George G; Jagannathan U
    J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgae-mediated bioremediation: current trends and opportunities-a review.
    Ali SS; Hassan LHS; El-Sheekh M
    Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.