These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 35014284)
1. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. Zhang C; Yan Q; Li J; Zhu Y; Zhang Y ACS Appl Bio Mater; 2021 Jan; 4(1):277-294. PubMed ID: 35014284 [TBL] [Abstract][Full Text] [Related]
2. Circumventing Myeloid-Derived Suppressor Cell-Mediated Immunosuppression Using an Oxygen-Generated and -Economized Nanoplatform. Zuo H; Hou Y; Yu Y; Li Z; Liu H; Liu C; He J; Miao L ACS Appl Mater Interfaces; 2020 Dec; 12(50):55723-55736. PubMed ID: 33274915 [TBL] [Abstract][Full Text] [Related]
3. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy. Le QV; Suh J; Oh YK AAPS J; 2019 May; 21(4):64. PubMed ID: 31102154 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310 [TBL] [Abstract][Full Text] [Related]
5. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Phuengkham H; Ren L; Shin IW; Lim YT Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696 [TBL] [Abstract][Full Text] [Related]
6. A Cascade Nanozyme with Amplified Sonodynamic Therapeutic Effects through Comodulation of Hypoxia and Immunosuppression against Cancer. Tao N; Li H; Deng L; Zhao S; Ouyang J; Wen M; Chen W; Zeng K; Wei C; Liu YN ACS Nano; 2022 Jan; 16(1):485-501. PubMed ID: 34962762 [TBL] [Abstract][Full Text] [Related]
7. Combining microenvironment normalization strategies to improve cancer immunotherapy. Mpekris F; Voutouri C; Baish JW; Duda DG; Munn LL; Stylianopoulos T; Jain RK Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3728-3737. PubMed ID: 32015113 [TBL] [Abstract][Full Text] [Related]
8. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Schaaf MB; Garg AD; Agostinis P Cell Death Dis; 2018 Jan; 9(2):115. PubMed ID: 29371595 [TBL] [Abstract][Full Text] [Related]
9. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Sun B; Hyun H; Li LT; Wang AZ Acta Pharmacol Sin; 2020 Jul; 41(7):970-985. PubMed ID: 32424240 [TBL] [Abstract][Full Text] [Related]
10. Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of H Song X; Xu J; Liang C; Chao Y; Jin Q; Wang C; Chen M; Liu Z Nano Lett; 2018 Oct; 18(10):6360-6368. PubMed ID: 30247918 [TBL] [Abstract][Full Text] [Related]
11. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Qian C; Liu C; Liu W; Zhou R; Zhao L Front Immunol; 2023; 14():1291530. PubMed ID: 38193080 [TBL] [Abstract][Full Text] [Related]
12. Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy. Fu Z; Mowday AM; Smaill JB; Hermans IF; Patterson AV Cells; 2021 Apr; 10(5):. PubMed ID: 33923305 [TBL] [Abstract][Full Text] [Related]
13. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Martin JD; Fukumura D; Duda DG; Boucher Y; Jain RK Cold Spring Harb Perspect Med; 2016 Dec; 6(12):. PubMed ID: 27663981 [TBL] [Abstract][Full Text] [Related]
14. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. Wang J; Li L; Xu ZP Small Methods; 2024 Jan; 8(1):e2301005. PubMed ID: 37743260 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. Zhen W; Weichselbaum RR; Lin W Adv Mater; 2023 May; 35(21):e2206370. PubMed ID: 36524978 [TBL] [Abstract][Full Text] [Related]
16. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells. Qi FL; Wang MF; Li BZ; Lu ZF; Nie GJ; Li SP Acta Pharmacol Sin; 2020 Jul; 41(7):895-901. PubMed ID: 32467568 [TBL] [Abstract][Full Text] [Related]
17. Alleviating hypoxia to improve cancer immunotherapy. Fan P; Zhang N; Candi E; Agostini M; Piacentini M; ; Shi Y; Huang Y; Melino G Oncogene; 2023 Dec; 42(49):3591-3604. PubMed ID: 37884747 [TBL] [Abstract][Full Text] [Related]
18. Engineering Endogenous Tumor-Associated Macrophage-Targeted Biomimetic Nano-RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemo-Immunotherapy. Wang Y; Yu J; Luo Z; Shi Q; Liu G; Wu F; Wang Z; Huang Y; Zhou D Adv Mater; 2021 Oct; 33(39):e2103497. PubMed ID: 34387375 [TBL] [Abstract][Full Text] [Related]
19. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Hatfield SM; Kjaergaard J; Lukashev D; Schreiber TH; Belikoff B; Abbott R; Sethumadhavan S; Philbrook P; Ko K; Cannici R; Thayer M; Rodig S; Kutok JL; Jackson EK; Karger B; Podack ER; Ohta A; Sitkovsky MV Sci Transl Med; 2015 Mar; 7(277):277ra30. PubMed ID: 25739764 [TBL] [Abstract][Full Text] [Related]
20. Single-dose injectable nanovaccine-in-hydrogel for robust immunotherapy of large tumors with abscopal effect. Cheng F; Su T; Zhou S; Liu X; Yang S; Lin S; Guo W; Zhu G Sci Adv; 2023 Jul; 9(28):eade6257. PubMed ID: 37450588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]