BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35014325)

  • 1. Rational Design of Near-Infrared Cyanine-Based Fluorescent Probes for Rapid In Vivo Sensing Cysteine.
    Zhang H; Yan C; Li H; Shi L; Wang R; Guo Z; Zhu WH
    ACS Appl Bio Mater; 2021 Mar; 4(3):2001-2008. PubMed ID: 35014325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a water-soluble near-infrared fluorescent probe for endogenous cysteine imaging.
    Li Y; He X; Huang Y; Xu L; Zhao L; Li X; Sun Y; Wang X; Ma P; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117544. PubMed ID: 31629982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo.
    Yin K; Yu F; Zhang W; Chen L
    Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples.
    Li SJ; Fu YJ; Li CY; Li YF; Yi LH; Ou-Yang J
    Anal Chim Acta; 2017 Nov; 994():73-81. PubMed ID: 29126471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a NIR fluorescent probe for highly selective and sensitive detection of cysteine in living cells and in vivo.
    Qi S; Zhang H; Wang X; Lv J; Liu D; Shen W; Li Y; Du J; Yang Q
    Talanta; 2021 Nov; 234():122685. PubMed ID: 34364484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric and near-infrared fluorescent probe for cysteine and homocysteine detection.
    Yang X; Wang Y; Zhao MX; Yang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():10-14. PubMed ID: 30593994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Cysteine in Bioimaging with a Near-Infrared Probe Based on a Novel Fluorescence Quenching Mechanism.
    Tao Y; Ji X; Zhang J; Jin Y; Wang N; Si Y; Zhao W
    Chembiochem; 2020 Nov; 21(21):3131-3136. PubMed ID: 32558103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems.
    Mulay SV; Kim Y; Choi M; Lee DY; Choi J; Lee Y; Jon S; Churchill DG
    Anal Chem; 2018 Feb; 90(4):2648-2654. PubMed ID: 29359562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo.
    Han C; Yang H; Chen M; Su Q; Feng W; Li F
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine.
    Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y
    Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extra-large Stokes shift near-infrared fluorescent probe for specific detection and imaging of cysteine.
    An S; Lin Y; Ye T; Bai T; He D; Guo L; Qian Z; Li L; Liu H; Wang J
    Talanta; 2024 Jan; 267():125247. PubMed ID: 37769499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells.
    Zhang J; Wang J; Liu J; Ning L; Zhu X; Yu B; Liu X; Yao X; Zhang H
    Anal Chem; 2015; 87(9):4856-63. PubMed ID: 25875053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells.
    Cai S; Liu C; Jiao X; Zhao L; Zeng X
    J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe.
    Li L; Shi W; Wu X; Li X; Ma H
    Anal Bioanal Chem; 2018 Oct; 410(26):6771-6777. PubMed ID: 29909457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A D-π-A-based near-infrared fluorescent probe with large Stokes shift for the detection of cysteine in vivo.
    Fang WL; Liang ZY; Guo XF; Wang H
    Talanta; 2024 Feb; 268(Pt 1):125354. PubMed ID: 37918245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging.
    Wang RX; Ou Y; Chen Y; Ren TB; Yuan L; Zhang XB
    J Am Chem Soc; 2024 May; 146(17):11669-11678. PubMed ID: 38644738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.