These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35014456)

  • 21. Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from Green rat.
    Ito Y; Tanaka N; Fujimoto Y; Yasunaga Y; Ishida O; Agung M; Ochi M
    J Biomed Mater Res A; 2004 Jun; 69(3):454-61. PubMed ID: 15127392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo.
    Kim JA; Yun HS; Choi YA; Kim JE; Choi SY; Kwon TG; Kim YK; Kwon TY; Bae MA; Kim NJ; Bae YC; Shin HI; Park EK
    Biomaterials; 2018 Mar; 157():51-61. PubMed ID: 29245051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorination Enhances the Osteogenic Capacity of Porcine Hydroxyapatite.
    Liu R; Qiao W; Huang B; Chen Z; Fang J; Li Z; Chen Z
    Tissue Eng Part A; 2018 Aug; 24(15-16):1207-1217. PubMed ID: 29376480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osteogenic potential using a malleable, biodegradable composite added traditional Chinese medicine: in vitro and in vivo evaluations.
    Yao CH; Liu BS; Liu CG; Chen YS
    Am J Chin Med; 2006; 34(5):873-86. PubMed ID: 17080551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells.
    Gizer M; Köse S; Karaosmanoglu B; Taskiran EZ; Berkkan A; Timuçin M; Korkusuz F; Korkusuz P
    Biol Trace Elem Res; 2020 Feb; 193(2):364-376. PubMed ID: 31069715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue regeneration and repair of goat segmental femur defect with bioactive triphasic ceramic-coated hydroxyapatite scaffold.
    Nair MB; Varma HK; Menon KV; Shenoy SJ; John A
    J Biomed Mater Res A; 2009 Dec; 91(3):855-65. PubMed ID: 19065569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration.
    Chen S; Tang Y; Liu Y; Zhang P; Lv L; Zhang X; Jia L; Zhou Y
    Cell Prolif; 2019 Sep; 52(5):e12669. PubMed ID: 31380594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyapatite granule/carrier composites promote new bone formation in cortical defects.
    Liljensten EL; Attaelmanan AG; Larsson C; Ljusberg-Wahren H; Danielsen N; Hirsch JM; Thomsen P
    Clin Implant Dent Relat Res; 2000; 2(1):50-9. PubMed ID: 11359275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics.
    Kotobuki N; Ioku K; Kawagoe D; Fujimori H; Goto S; Ohgushi H
    Biomaterials; 2005 Mar; 26(7):779-85. PubMed ID: 15350783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exosome-integrated titanium oxide nanotubes for targeted bone regeneration.
    Wei F; Li M; Crawford R; Zhou Y; Xiao Y
    Acta Biomater; 2019 Mar; 86():480-492. PubMed ID: 30630122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia.
    Chu W; Gan Y; Zhuang Y; Wang X; Zhao J; Tang T; Dai K
    Stem Cell Res Ther; 2018 Jun; 9(1):157. PubMed ID: 29895312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-Hydroxyapatite Bone Substitute Functionalized with Bone Active Molecules for Enhanced Cranial Bone Regeneration.
    Teotia AK; Raina DB; Singh C; Sinha N; Isaksson H; Tägil M; Lidgren L; Kumar A
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6816-6828. PubMed ID: 28171719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenic potential of Zn
    Wang B; Yang M; Liu L; Yan G; Yan H; Feng J; Li Z; Li D; Sun H; Yang B
    Biomater Sci; 2019 Nov; 7(12):5414-5423. PubMed ID: 31633717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects.
    Jing D; Tong S; Zhai M; Li X; Cai J; Wu Y; Shen G; Zhang X; Xu Q; Guo Z; Luo E
    Sci Rep; 2015 Nov; 5():17134. PubMed ID: 26601709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro.
    Shu X; Feng J; Feng J; Huang X; Li L; Shi Q
    J Biomater Appl; 2017 Nov; 32(5):547-560. PubMed ID: 29113568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein.
    Noshi T; Yoshikawa T; Ikeuchi M; Dohi Y; Ohgushi H; Horiuchi K; Sugimura M; Ichijima K; Yonemasu K
    J Biomed Mater Res; 2000 Dec; 52(4):621-30. PubMed ID: 11033544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low level laser therapy does not modulate the outcomes of a highly bioactive glass-ceramic (Biosilicate) on bone consolidation in rats.
    Oliveira P; Ribeiro DA; Pipi EF; Driusso P; Parizotto NA; Renno AC
    J Mater Sci Mater Med; 2010 Apr; 21(4):1379-84. PubMed ID: 19943088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.