These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35014456)

  • 41. Impacts of a Nano-Laponite Ceramic on Surface Performance, Apatite Mineralization, Cell Response, and Osseointegration of a Polyimide-Based Biocomposite.
    Zhang Y; Jiang W; Yuan S; Zhao Q; Liu Z; Yu W
    Int J Nanomedicine; 2020; 15():9389-9405. PubMed ID: 33262594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
    Kubasiewicz-Ross P; Hadzik J; Seeliger J; Kozak K; Jurczyszyn K; Gerber H; Dominiak M; Kunert-Keil C
    Ann Anat; 2017 Sep; 213():83-90. PubMed ID: 28655570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate) /Octacalcium phosphate Nanofibrous membranes for effective guided bone regeneration.
    Wang Z; Ma K; Jiang X; Xie J; Cai P; Li F; Liang R; Zhao J; Zheng L
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110763. PubMed ID: 32409022
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regenerative medicine: Are calcium phosphate ceramics 'smart' biomaterials?
    Boyan BD; Schwartz Z
    Nat Rev Rheumatol; 2011 Jan; 7(1):8-9. PubMed ID: 21206482
    [No Abstract]   [Full Text] [Related]  

  • 45. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.
    Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL
    Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility.
    Borkowski L; Sroka-Bartnicka A; Polkowska I; Pawlowska M; Palka K; Zieba E; Slosarczyk A; Jozwiak K; Ginalska G
    Anal Bioanal Chem; 2017 Sep; 409(24):5747-5755. PubMed ID: 28748313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of novel surgical procedures using decellularised muscle and bioactive ceramic: a histological analysis.
    Alfotawi R; Ahmed R; Atteya M; Mahmood A; Siyal A; AlHindi M; El-Ghannam A
    J Mater Sci Mater Med; 2021 Aug; 32(9):113. PubMed ID: 34453610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite.
    Hesaraki S; Nazarian H; Pourbaghi-Masouleh M; Borhan S
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):108-18. PubMed ID: 23853054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of bone repair mediated by recombination BMP-2/ recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite.
    Zeng J; Xiong S; Ding L; Zhou J; Li J; Qiu P; Liao X; Xiong L; Long Z; Liu S
    Life Sci; 2019 Oct; 234():116743. PubMed ID: 31408660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biofunctionalization with Cissus quadrangularis phytobioactives accentuates Nano-Hydroxyapatite based ceramic Nano-Cement for Neo-Bone formation in critical sized bone defect.
    Gupta A; Kumar Mehta S; Qayoom I; Gupta S; Singh S; Kumar A
    Int J Pharm; 2023 Jul; 642():123110. PubMed ID: 37302672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesenchymal stem cells and bioceramics: strategies to regenerate the skeleton.
    Ohgushi H; Miyake J; Tateishi T
    Novartis Found Symp; 2003; 249():118-27; discussion 127-32, 170-4, 239-41. PubMed ID: 12708653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration.
    Mohan BG; Suresh Babu S; Varma HK; John A
    J Mater Sci Mater Med; 2013 Dec; 24(12):2831-44. PubMed ID: 23990148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration.
    Lu Z; Chen Y; Dunstan C; Roohani-Esfahani S; Zreiqat H
    Tissue Eng Part A; 2017 Nov; 23(21-22):1212-1220. PubMed ID: 28346798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced bone formation in rat critical-size tibia defect by a novel quercetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite.
    Ren M; Wang X; Hu M; Jiang Y; Xu D; Xiang H; Lin J; Yu B
    Biomed Pharmacother; 2022 Feb; 146():112570. PubMed ID: 34959114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite.
    González Ocampo JI; Machado de Paula MM; Bassous NJ; Lobo AO; Ossa Orozco CP; Webster TJ
    Acta Biomater; 2019 Jan; 83():425-434. PubMed ID: 30342285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model.
    He Y; Dong Y; Cui F; Chen X; Lin R
    PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.