These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35014491)
1. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes. Kumawat RL; Pathak B ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491 [TBL] [Abstract][Full Text] [Related]
2. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701 [TBL] [Abstract][Full Text] [Related]
3. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps. Jena MK; Pathak B Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510 [TBL] [Abstract][Full Text] [Related]
4. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves. Maier FC; Fyta M Chemphyschem; 2020 Sep; 21(18):2068-2074. PubMed ID: 32721095 [TBL] [Abstract][Full Text] [Related]
5. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. Saha KK; Drndić M; Nikolić BK Nano Lett; 2012 Jan; 12(1):50-5. PubMed ID: 22141739 [TBL] [Abstract][Full Text] [Related]
6. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing. Kumawat RL; Garg P; Kumar S; Pathak B ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178 [TBL] [Abstract][Full Text] [Related]
7. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing. Shukla V; Jena NK; Grigoriev A; Ahuja R ACS Appl Mater Interfaces; 2017 Nov; 9(46):39945-39952. PubMed ID: 29099165 [TBL] [Abstract][Full Text] [Related]
8. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device. Kumawat RL; Pathak B Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959 [TBL] [Abstract][Full Text] [Related]
9. Recognizing nucleotides by cross-tunneling currents for DNA sequencing. Bagci VM; Kaun CC Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011917. PubMed ID: 21867223 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Kim WY; Kim KS J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178 [TBL] [Abstract][Full Text] [Related]
11. A Step toward Amino Acid-Labeled DNA Sequencing: Boosting Transmission Sensitivity of Graphene Nanogap. Mittal S; Pathak B ACS Appl Bio Mater; 2023 Jan; 6(1):218-227. PubMed ID: 36524773 [TBL] [Abstract][Full Text] [Related]
12. Predicting Finite-Bias Tunneling Current Properties from Zero-Bias Features: The Frontier Orbital Bias Dependence at an Exemplar Case of DNA Nucleotides in a Nanogap. Djurišić I; Jovanović VP; Dražić MS; Tomović AŽ; Zikic R Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835784 [TBL] [Abstract][Full Text] [Related]
13. Nanogap-based all-electronic DNA sequencing devices using MoS Perez A; Amorim RG; Villegas CEP; Rocha AR Phys Chem Chem Phys; 2020 Dec; 22(46):27053-27059. PubMed ID: 33215614 [TBL] [Abstract][Full Text] [Related]
14. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides. Kiakojouri A; Frank I; Nadimi E Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571 [TBL] [Abstract][Full Text] [Related]
15. Aviram-Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps. Agapito LA; Gayles J; Wolowiec C; Kioussis N Nanotechnology; 2012 Apr; 23(13):135202. PubMed ID: 22418779 [TBL] [Abstract][Full Text] [Related]
16. Functionalized carbon nanotube electrodes for controlled DNA sequencing. Kumawat RL; Pathak B Nanoscale Adv; 2020 Sep; 2(9):4041-4050. PubMed ID: 36132799 [TBL] [Abstract][Full Text] [Related]
17. Electronic signature of DNA nucleotides via transverse transport. Zwolak M; Di Ventra M Nano Lett; 2005 Mar; 5(3):421-4. PubMed ID: 15755087 [TBL] [Abstract][Full Text] [Related]
18. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study. Zou H; Wen S; Wu X; Wong KW; Yam C Phys Chem Chem Phys; 2022 Mar; 24(9):5748-5754. PubMed ID: 35191434 [TBL] [Abstract][Full Text] [Related]
19. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene. Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811 [TBL] [Abstract][Full Text] [Related]
20. Precision Basecalling of Single DNA Nucleotide from Overlapped Transmission Readouts with Machine Learning Aided Solid-State Nanogap. Jena MK; Mittal S; Pathak B ACS Appl Mater Interfaces; 2024 Jun; 16(23):29891-29901. PubMed ID: 38818926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]