BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35014491)

  • 1. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves.
    Maier FC; Fyta M
    Chemphyschem; 2020 Sep; 21(18):2068-2074. PubMed ID: 32721095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore.
    Saha KK; Drndić M; Nikolić BK
    Nano Lett; 2012 Jan; 12(1):50-5. PubMed ID: 22141739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
    Kumawat RL; Garg P; Kumar S; Pathak B
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing.
    Shukla V; Jena NK; Grigoriev A; Ahuja R
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39945-39952. PubMed ID: 29099165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device.
    Kumawat RL; Pathak B
    Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognizing nucleotides by cross-tunneling currents for DNA sequencing.
    Bagci VM; Kaun CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011917. PubMed ID: 21867223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Step toward Amino Acid-Labeled DNA Sequencing: Boosting Transmission Sensitivity of Graphene Nanogap.
    Mittal S; Pathak B
    ACS Appl Bio Mater; 2023 Jan; 6(1):218-227. PubMed ID: 36524773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Finite-Bias Tunneling Current Properties from Zero-Bias Features: The Frontier Orbital Bias Dependence at an Exemplar Case of DNA Nucleotides in a Nanogap.
    Djurišić I; Jovanović VP; Dražić MS; Tomović AŽ; Zikic R
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanogap-based all-electronic DNA sequencing devices using MoS
    Perez A; Amorim RG; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2020 Dec; 22(46):27053-27059. PubMed ID: 33215614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides.
    Kiakojouri A; Frank I; Nadimi E
    Phys Chem Chem Phys; 2021 Nov; 23(44):25126-25135. PubMed ID: 34729571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aviram-Ratner rectifying mechanism for DNA base-pair sequencing through graphene nanogaps.
    Agapito LA; Gayles J; Wolowiec C; Kioussis N
    Nanotechnology; 2012 Apr; 23(13):135202. PubMed ID: 22418779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized carbon nanotube electrodes for controlled DNA sequencing.
    Kumawat RL; Pathak B
    Nanoscale Adv; 2020 Sep; 2(9):4041-4050. PubMed ID: 36132799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic signature of DNA nucleotides via transverse transport.
    Zwolak M; Di Ventra M
    Nano Lett; 2005 Mar; 5(3):421-4. PubMed ID: 15755087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study.
    Zou H; Wen S; Wu X; Wong KW; Yam C
    Phys Chem Chem Phys; 2022 Mar; 24(9):5748-5754. PubMed ID: 35191434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision Basecalling of Single DNA Nucleotide from Overlapped Transmission Readouts with Machine Learning Aided Solid-State Nanogap.
    Jena MK; Mittal S; Pathak B
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29891-29901. PubMed ID: 38818926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.