These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35014518)

  • 21. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration.
    Lee H; Yang GH; Kim M; Lee J; Huh J; Kim G
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():140-147. PubMed ID: 29519423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid Crystal Elastomer Microspheres as Three-Dimensional Cell Scaffolds Supporting the Attachment and Proliferation of Myoblasts.
    Bera T; Freeman EJ; McDonough JA; Clements RJ; Aladlaan A; Miller DW; Malcuit C; Hegmann T; Hegmann E
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14528-35. PubMed ID: 26075811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L; Keshi E; Sauer IM; Weinhart M
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D hybrid printing platform for auricular cartilage reconstruction.
    Chung JHY; Kade JC; Jeiranikhameneh A; Ruberu K; Mukherjee P; Yue Z; Wallace GG
    Biomed Phys Eng Express; 2020 Mar; 6(3):035003. PubMed ID: 33438648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model.
    Chen M; Feng Z; Guo W; Yang D; Gao S; Li Y; Shen S; Yuan Z; Huang B; Zhang Y; Wang M; Li X; Hao L; Peng J; Liu S; Zhou Y; Guo Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41626-41639. PubMed ID: 31596568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds.
    Prévôt ME; Andro H; Alexander SLM; Ustunel S; Zhu C; Nikolov Z; Rafferty ST; Brannum MT; Kinsel B; Korley LTJ; Freeman EJ; McDonough JA; Clements RJ; Hegmann E
    Soft Matter; 2018 Jan; 14(3):354-360. PubMed ID: 29236117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality.
    Zhao Z; He Y; Meng X; Ye C
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61723-61732. PubMed ID: 34913686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.
    Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X
    Adv Mater; 2015 Jul; 27(27):4034. PubMed ID: 26172844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds.
    Rajaram A; Schreyer DJ; Chen DX
    J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.
    Suntornnond R; Tan EYS; An J; Chua CK
    Sci Rep; 2017 Dec; 7(1):16902. PubMed ID: 29203812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.