These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35014845)

  • 1. Peptide Isomerization is Suppressed at the Air-Water Interface.
    Singh AN; Limmer DT
    J Phys Chem Lett; 2022 Jan; 13(2):574-579. PubMed ID: 35014845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the solvent on the conformational behavior of the alanine dipeptide deduced from MD simulations.
    Rubio-Martinez J; Tomas MS; Perez JJ
    J Mol Graph Model; 2017 Nov; 78():118-128. PubMed ID: 29055185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water.
    Yonezawa Y; Nakata K; Sakakura K; Takada T; Nakamura H
    J Am Chem Soc; 2009 Apr; 131(12):4535-40. PubMed ID: 19267429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and reaction coordinate for the isomerization of alanine dipeptide by a forward flux sampling protocol.
    Velez-Vega C; Borrero EE; Escobedo FA
    J Chem Phys; 2009 Jun; 130(22):225101. PubMed ID: 19530790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple state transition interface sampling of alanine dipeptide in explicit solvent.
    Du WN; Marino KA; Bolhuis PG
    J Chem Phys; 2011 Oct; 135(14):145102. PubMed ID: 22010733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology.
    García-Prieto FF; Fdez Galván I; Aguilar MA; Martín ME
    J Chem Phys; 2011 Nov; 135(19):194502. PubMed ID: 22112087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational preferences of non-prolyl and prolyl residues.
    Kang YK
    J Phys Chem B; 2006 Oct; 110(42):21338-48. PubMed ID: 17048963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction coordinates of biomolecular isomerization.
    Bolhuis PG; Dellago C; Chandler D
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5877-82. PubMed ID: 10801977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of solvent in determining conformational preferences of alanine dipeptide in water.
    Drozdov AN; Grossfield A; Pappu RV
    J Am Chem Soc; 2004 Mar; 126(8):2574-81. PubMed ID: 14982467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data.
    Cruz V; Ramos J; Martínez-Salazar J
    J Phys Chem B; 2011 Apr; 115(16):4880-6. PubMed ID: 21469661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentials of mean force for the interaction of blocked alanine dipeptide molecules in water and gas phase from MD simulations.
    Dadarlat VM
    Biophys J; 2005 Sep; 89(3):1433-45. PubMed ID: 15994888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study.
    Benjamin I; Pohorille A
    J Chem Phys; 1993 Jan; 98(1):236-42. PubMed ID: 11539443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.
    Harris RC; Deng N; Levy RM; Ishizuka R; Matubayasi N
    J Comput Chem; 2017 Jun; 38(15):1198-1208. PubMed ID: 28008630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific interactions of sodium salts with alanine dipeptide and tetrapeptide in water: insights from molecular dynamics.
    Ioannou F; Archontis G; Leontidis E
    J Phys Chem B; 2011 Nov; 115(45):13389-400. PubMed ID: 21978277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational preferences and cis-trans isomerization of L-3,4-dehydroproline residue.
    Kang YK; Park HS
    Biopolymers; 2009; 92(5):387-98. PubMed ID: 19373924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vibrational energy flow on isomerization of flexible molecules: incorporating non-Rice-Ramsperger-Kassel-Marcus kinetics in the simulation of dipeptide isomerization.
    Agbo JK; Leitner DM; Evans DA; Wales DJ
    J Chem Phys; 2005 Sep; 123(12):124304. PubMed ID: 16392479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
    Toal S; Meral D; Verbaro D; Urbanc B; Schweitzer-Stenner R
    J Phys Chem B; 2013 Apr; 117(14):3689-706. PubMed ID: 23448349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment.
    Jono R; Watanabe Y; Shimizu K; Terada T
    J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.