BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35014871)

  • 1. Genome-Scale Metabolic Modelling of Lifestyle Changes in Rhizobium leguminosarum.
    Schulte CCM; Ramachandran VK; Papachristodoulou A; Poole PS
    mSystems; 2022 Feb; 7(1):e0097521. PubMed ID: 35014871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Intracellular Bacteria to Differentiated Bacteroids: Transcriptome and Metabolome Analysis in
    Lamouche F; Chaumeret A; Guefrachi I; Barrière Q; Pierre O; Guérard F; Gilard F; Giraud E; Dessaux Y; Gakière B; Timchenko T; Kereszt A; Mergaert P; Alunni B
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31182497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying abnormalities in symbiotic development between Trifolium spp. and Rhizobium leguminosarum bv. trifolii leading to sub-optimal and ineffective nodule phenotypes.
    Melino VJ; Drew EA; Ballard RA; Reeve WG; Thomson G; White RG; O'Hara GW
    Ann Bot; 2012 Dec; 110(8):1559-72. PubMed ID: 22989463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lifestyle adaptations of
    Wheatley RM; Ford BL; Li L; Aroney STN; Knights HE; Ledermann R; East AK; Ramachandran VK; Poole PS
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23823-23834. PubMed ID: 32900931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells.
    Durán D; Albareda M; García C; Marina AI; Ruiz-Argüeso T; Palacios JM
    Mol Cell Proteomics; 2021; 20():100009. PubMed ID: 33214187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
    Terpolilli JJ; Masakapalli SK; Karunakaran R; Webb IU; Green R; Watmough NJ; Kruger NJ; Ratcliffe RG; Poole PS
    J Bacteriol; 2016 Oct; 198(20):2864-75. PubMed ID: 27501983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules.
    Green RT; East AK; Karunakaran R; Downie JA; Poole PS
    Microb Genom; 2019 Feb; 5(2):. PubMed ID: 30777812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of symbiotic auxotrophy in the Rhizobium-legume symbioses.
    Prell J; Bourdès A; Kumar S; Lodwig E; Hosie A; Kinghorn S; White J; Poole P
    PLoS One; 2010 Nov; 5(11):e13933. PubMed ID: 21085630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing
    Mendoza-Suárez MA; Geddes BA; Sánchez-Cañizares C; Ramírez-González RH; Kirchhelle C; Jorrin B; Poole PS
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9822-9831. PubMed ID: 32317381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population Genomics Analysis of Legume Host Preference for Specific Rhizobial Genotypes in the Rhizobium leguminosarum bv. viciae Symbioses.
    Jorrin B; Imperial J
    Mol Plant Microbe Interact; 2015 Mar; 28(3):310-8. PubMed ID: 25514682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling.
    Moyano G; Marco D; Knopoff D; Torres G; Turner C
    Math Biosci; 2017 Oct; 292():30-35. PubMed ID: 28711576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying legume-rhizobium symbioses.
    Yang J; Lan L; Jin Y; Yu N; Wang D; Wang E
    J Integr Plant Biol; 2022 Feb; 64(2):244-267. PubMed ID: 34962095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of nitrogen fixation in rhizobium-legume symbioses.
    Schulte CCM; Borah K; Wheatley RM; Terpolilli JJ; Saalbach G; Crang N; de Groot DH; Ratcliffe RG; Kruger NJ; Papachristodoulou A; Poole PS
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What determines symbiotic nitrogen fixation efficiency in rhizobium: recent insights into Rhizobium leguminosarum.
    Li X; Li Z
    Arch Microbiol; 2023 Aug; 205(9):300. PubMed ID: 37542687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis.
    Ferguson S; Major AS; Sullivan JT; Bourke SD; Kelly SJ; Perry BJ; Ronson CW
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods.
    Mauchline TH; Hayat R; Roberts R; Powers SJ; Hirsch PR
    Lett Appl Microbiol; 2014 Aug; 59(2):238-46. PubMed ID: 24739023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology.
    Thal B; Braun HP; Eubel H
    Plant Mol Biol; 2018 Jun; 97(3):233-251. PubMed ID: 29779088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
    Terpolilli JJ; Hood GA; Poole PS
    Adv Microb Physiol; 2012; 60():325-89. PubMed ID: 22633062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium-Legume Symbiosis.
    Jiménez-Guerrero I; Medina C; Vinardell JM; Ollero FJ; López-Baena FJ
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.