These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35014871)

  • 21. [Functional activity of exoglycans from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 during the formation of legume-rhizobia symbiosis against a high-nitrogen background].
    Kosenko LV; Mandrovskaia NM; Krugova ED
    Mikrobiologiia; 2004; 73(3):416-22. PubMed ID: 15315237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids.
    Oono R; Denison RF
    Plant Physiol; 2010 Nov; 154(3):1541-8. PubMed ID: 20837702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhizobial Diversity and Nodulation Characteristics of the Extremely Promiscuous Legume Sophora flavescens.
    Jiao YS; Liu YH; Yan H; Wang ET; Tian CF; Chen WX; Guo BL; Chen WF
    Mol Plant Microbe Interact; 2015 Dec; 28(12):1338-52. PubMed ID: 26389798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic changes of rhizobia in legume nodules.
    Prell J; Poole P
    Trends Microbiol; 2006 Apr; 14(4):161-8. PubMed ID: 16520035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
    Wheatley RM; Ramachandran VK; Geddes BA; Perry BJ; Yost CK; Poole PS
    J Bacteriol; 2017 Jan; 199(1):. PubMed ID: 27795326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Horizontal gene transfer of the Mer operon is associated with large effects on the transcriptome and increased tolerance to mercury in nitrogen-fixing bacteria.
    Bhat A; Sharma R; Desigan K; Lucas MM; Mishra A; Bowers RM; Woyke T; Epstein B; Tiffin P; Pueyo JJ; Paape T
    BMC Microbiol; 2024 Jul; 24(1):247. PubMed ID: 38971740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The motility and chemosensory systems of Rhizobium leguminosarum, their role in symbiosis, and link to PTS
    Aroney STN; Pini F; Kessler C; Poole PS; Sánchez-Cañizares C
    Environ Microbiol; 2024 Feb; 26(2):e16570. PubMed ID: 38216524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Rhizobium leguminosarum lipopolysaccharide lipid-A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation.
    Vedam V; Haynes JG; Kannenberg EL; Carlson RW; Sherrier DJ
    Mol Plant Microbe Interact; 2004 Mar; 17(3):283-91. PubMed ID: 15000395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of nano-TiO₂ on the agronomically-relevant Rhizobium-legume symbiosis.
    Fan R; Huang YC; Grusak MA; Huang CP; Sherrier DJ
    Sci Total Environ; 2014 Jan; 466-467():503-12. PubMed ID: 23933452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhizobia: highways to NO.
    Ruiz B; Frostegård Å; Bruand C; Meilhoc E
    Biochem Soc Trans; 2021 Feb; 49(1):495-505. PubMed ID: 33544133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of nano-ZnO on the agronomically relevant Rhizobium-legume symbiosis.
    Huang YC; Fan R; Grusak MA; Sherrier JD; Huang CP
    Sci Total Environ; 2014 Nov; 497-498():78-90. PubMed ID: 25124056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhizobium determinants of rhizosphere persistence and root colonization.
    Knights HE; Ramachandran VK; Jorrin B; Ledermann R; Parsons JD; Aroney STN; Poole PS
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38690786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How Rhizobia Adapt to the Nodule Environment.
    Ledermann R; Schulte CCM; Poole PS
    J Bacteriol; 2021 May; 203(12):e0053920. PubMed ID: 33526611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Evolution of Host-Beneficial Traits in Nitrogen-Fixing Bacteria: Modeling and Construction of Systems for Interspecies Altruism].
    Provorov NA; Vorohyov NI
    Prikl Biokhim Mikrobiol; 2015; 51(4):363-70. PubMed ID: 26353400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Rhizobium--legume symbiosis.
    Beringer JE; Brewin N; Johnston AW; Schulman HM; Hopwood DA
    Proc R Soc Lond B Biol Sci; 1979 Apr; 204(1155):219-33. PubMed ID: 36624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis.
    Hichri I; Boscari A; Castella C; Rovere M; Puppo A; Brouquisse R
    J Exp Bot; 2015 May; 66(10):2877-87. PubMed ID: 25732535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
    Lodwig EM; Hosie AH; Bourdès A; Findlay K; Allaway D; Karunakaran R; Downie JA; Poole PS
    Nature; 2003 Apr; 422(6933):722-6. PubMed ID: 12700763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems.
    Deakin WJ; Broughton WJ
    Nat Rev Microbiol; 2009 Apr; 7(4):312-20. PubMed ID: 19270720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nickel availability and hupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in Hup(-) rhizobia.
    Brito B; Monza J; Imperial J; Ruiz-Argüeso T; Palacios JM
    Appl Environ Microbiol; 2000 Mar; 66(3):937-42. PubMed ID: 10698755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.