These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 35014910)

  • 1. A novel biowaste-based biosorbent material for effective purification of methylene blue from water environment.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2022; 24(12):1243-1250. PubMed ID: 35014910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of biorefinery by-product of
    Deniz F
    Int J Phytoremediation; 2023; 25(1):27-35. PubMed ID: 35501675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of a common micropollutant (methylene blue) from a water environment by chemically activated biomass of a widely available plant species (
    Deniz F
    Int J Phytoremediation; 2024; 26(5):754-763. PubMed ID: 37791628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nigella sativa seed based nanohybrid composite-Fe
    Siddiqui SI; Zohra F; Chaudhry SA
    Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution.
    Deniz F; Yildiz H
    Int J Phytoremediation; 2019; 21(3):259-267. PubMed ID: 30652489
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Mathivanan M; Syed Abdul Rahman S; Vedachalam R; A SPK; G S; Karuppiah S
    Int J Phytoremediation; 2021; 23(9):982-1000. PubMed ID: 33539712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2020; 22(4):353-362. PubMed ID: 31512499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nigella sativa seed based nanocomposite-MnO
    Siddiqui SI; Manzoor O; Mohsin M; Chaudhry SA
    Environ Res; 2019 Apr; 171():328-340. PubMed ID: 30711734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of methylene blue and malachite green on biodegradable magnetic
    Parlayıcı Ş; Pehlivan E
    Int J Phytoremediation; 2021; 23(1):26-40. PubMed ID: 32715734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of Food Green 3 by a novel green generation composite biosorbent from aqueous environment.
    Deniz F; Kepekci RA
    Int J Phytoremediation; 2017 Jun; 19(6):579-586. PubMed ID: 27936896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling.
    Nayak AK; Pal A
    J Environ Manage; 2017 Sep; 200():145-159. PubMed ID: 28577452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies.
    Jain SN; Gogate PR
    J Environ Manage; 2018 Mar; 210():226-238. PubMed ID: 29353115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of methylene blue by nonliving biomass of the brown macroalga Sargassum hemiphyllum.
    Liang J; Xia J; Long J
    Water Sci Technol; 2017 Sep; 76(5-6):1574-1583. PubMed ID: 28953483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye.
    Akar T; Tosun I; Kaynak Z; Kavas E; Incirkus G; Akar ST
    J Hazard Mater; 2009 Nov; 171(1-3):865-71. PubMed ID: 19631464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation.
    de Freitas JDS; Delgado Bertéli MB; Neto JC; Gasparotto ES; Celso Gonçalves A; do Valle JS; Otero DM; Linde GA; Ribeiro CDF; Caetano J; Dragunski DC; Colauto NB
    World J Microbiol Biotechnol; 2023 Mar; 39(5):110. PubMed ID: 36905533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of Methylene Blue onto spent corncob substrate: kinetics, equilibrium and thermodynamic studies.
    Zhou Q; Gong WQ; Li YB; Chen SH; Yang DJ; Bai CP; Liu XF; Xu N
    Water Sci Technol; 2011; 63(12):2775-80. PubMed ID: 22049698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption and regeneration potentials of magnetite nanoparticle loaded
    Akpomie KG; Conradie J
    Int J Phytoremediation; 2021; 23(4):347-361. PubMed ID: 32898434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling.
    Maurya R; Ghosh T; Paliwal C; Shrivastav A; Chokshi K; Pancha I; Ghosh A; Mishra S
    PLoS One; 2014; 9(10):e109545. PubMed ID: 25310576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An economical and effective alternative to commercial activated carbon for treatment of synthetic dye pollution in aquatic environment: surfactant modified waste product of
    Deniz F
    Int J Phytoremediation; 2021; 23(5):530-538. PubMed ID: 33052703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.