These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 35014910)
21. Removal of methylene blue dye from water by a spent bleaching earth biosorbent. Belhaine A; Ghezzar MR; Abdelmalek F; Tayebi K; Ghomari A; Addou A Water Sci Technol; 2016 Dec; 74(11):2534-2540. PubMed ID: 27973358 [TBL] [Abstract][Full Text] [Related]
22. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Georgin J; Franco DSP; Netto MS; Allasia D; Oliveira MLS; Dotto GL Environ Sci Pollut Res Int; 2020 Jun; 27(17):20831-20843. PubMed ID: 32248415 [TBL] [Abstract][Full Text] [Related]
23. Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto Rosa damascena leaves as a low-cost biosorbent. Fawzy MA; Al-Yasi HM; Galal TM; Hamza RZ; Abdelkader TG; Ali EF; Hassan SHA Sci Rep; 2022 May; 12(1):8583. PubMed ID: 35595800 [TBL] [Abstract][Full Text] [Related]
24. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. Diehl M; Silva LFO; Schnorr C; Netto MS; Bruckmann FS; Dotto GL Environ Sci Pollut Res Int; 2023 Apr; 30(18):51920-51931. PubMed ID: 36820982 [TBL] [Abstract][Full Text] [Related]
25. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries. Akar T; Anilan B; Gorgulu A; Akar ST J Hazard Mater; 2009 Sep; 168(2-3):1302-9. PubMed ID: 19362415 [TBL] [Abstract][Full Text] [Related]
26. Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies. Nayak AK; Pal A J Environ Manage; 2018 Jul; 217():573-591. PubMed ID: 29649730 [TBL] [Abstract][Full Text] [Related]
27. Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Sharma S; Hasan A; Kumar N; Pandey LM Environ Sci Pollut Res Int; 2018 Aug; 25(22):21605-21615. PubMed ID: 29785597 [TBL] [Abstract][Full Text] [Related]
28. Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies. Deniz F; Yildiz H Int J Phytoremediation; 2019; 21(11):1065-1071. PubMed ID: 31025570 [TBL] [Abstract][Full Text] [Related]
29. Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass. Kumari S; Verma A; Sharma P; Agarwal S; Rajput VD; Minkina T; Rajput P; Singh SP; Garg MC Sci Rep; 2023 May; 13(1):8574. PubMed ID: 37237060 [TBL] [Abstract][Full Text] [Related]
30. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Zhang B; Fan R; Bai Z; Wang S; Wang L; Shi J Environ Sci Pollut Res Int; 2013 Mar; 20(3):1367-73. PubMed ID: 22961488 [TBL] [Abstract][Full Text] [Related]
31. Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. Yaqub A; Syed SM; Ajab H; Zia Ul Haq M J Environ Manage; 2023 Feb; 327():116925. PubMed ID: 36493672 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green algae Ulothrix sp. Doğar C; Gürses A; Açikyildiz M; Ozkan E Colloids Surf B Biointerfaces; 2010 Mar; 76(1):279-85. PubMed ID: 19963357 [TBL] [Abstract][Full Text] [Related]
33. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. Nasrullah A; Khan H; Khan AS; Man Z; Muhammad N; Khan MI; Abd El-Salam NM ScientificWorldJournal; 2015; 2015():562693. PubMed ID: 25705714 [TBL] [Abstract][Full Text] [Related]
34. Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. Albadarin AB; Mangwandi C J Environ Manage; 2015 Dec; 164():86-93. PubMed ID: 26355260 [TBL] [Abstract][Full Text] [Related]
35. Macroalgae of Iridaea cordata as an efficient biosorbent to remove hazardous cationic dyes from aqueous solutions. Escudero LB; Smichowski PN; Dotto GL Water Sci Technol; 2017 Dec; 76(11-12):3379-3391. PubMed ID: 29236017 [TBL] [Abstract][Full Text] [Related]
36. Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. Moghazy RM; Labena A; Husien S Int J Biol Macromol; 2019 Aug; 134():330-343. PubMed ID: 31054306 [TBL] [Abstract][Full Text] [Related]
37. Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. Ncibi MC; Mahjoub B; Seffen M J Hazard Mater; 2007 Jan; 139(2):280-5. PubMed ID: 16860936 [TBL] [Abstract][Full Text] [Related]
38. Mathialagan K; Ramesh Kumar K; Sadhanantham JDD; Syed Abdul Rahman S; Pasupathi S; Mathivanan M; Karuppiah S Int J Phytoremediation; 2023; 25(8):1077-1094. PubMed ID: 36219071 [TBL] [Abstract][Full Text] [Related]
39. Characterization and valuable use of Ammar C; El-Ghoul Y; Jabli M Int J Phytoremediation; 2021; 23(10):1085-1094. PubMed ID: 33511852 [TBL] [Abstract][Full Text] [Related]
40. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. Xiong XJ; Meng XJ; Zheng TL J Hazard Mater; 2010 Mar; 175(1-3):241-6. PubMed ID: 19879044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]