These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 35014910)

  • 41. Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.
    Gürel L
    Water Sci Technol; 2017 Apr; 75(7-8):1889-1898. PubMed ID: 28452781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 Nov; 171(1-3):500-7. PubMed ID: 19576694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal.
    Rambabu K; Bharath G; Banat F; Show PL
    Environ Res; 2020 Aug; 187():109694. PubMed ID: 32485359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of malachite green and mixed dyes from aqueous and textile effluents using acclimatized and sonicated microalgal (
    Getachew D; Suresh A; Kamaraj M; Ayele A; Benor S
    Int J Phytoremediation; 2022; 24(8):881-892. PubMed ID: 34618651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste.
    Pavan FA; Lima EC; Dias SL; Mazzocato AC
    J Hazard Mater; 2008 Feb; 150(3):703-12. PubMed ID: 17597293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosorption of arsenic from aqueous solution using dye waste.
    Nigam S; Vankar PS; Gopal K
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1161-72. PubMed ID: 22661261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga
    Seoane R; Santaeufemia S; Abalde J; Torres E
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental investigation of H
    Waghmare C; Ghodmare S; Ansari K; Dehghani MH; Amir Khan M; Hasan MA; Islam S; Khan NA; Zahmatkesh S
    J Environ Manage; 2023 Nov; 345():118815. PubMed ID: 37633104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sustainable environmental remediation approach for biocide removal from water medium: a model biosorption study using activated biological waste.
    Deniz F; Bural H
    Int J Phytoremediation; 2021; 23(2):111-118. PubMed ID: 32723073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies.
    Mussa ZH; Al-Ameer LR; Al-Qaim FF; Deyab IF; Kamyab H; Chelliapan S
    Environ Monit Assess; 2023 Jul; 195(8):940. PubMed ID: 37436672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass.
    El-Naggar NE; Rabei NH
    Sci Rep; 2020 Oct; 10(1):17439. PubMed ID: 33060658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum.
    Kumar KV; Porkodi K
    J Hazard Mater; 2007 Jul; 146(1-2):214-26. PubMed ID: 17222969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using Casuarina equisetifolia pines.
    Chandarana H; Senthil Kumar P; Seenuvasan M; Anil Kumar M
    Chemosphere; 2021 Dec; 285():131480. PubMed ID: 34265726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An efficient biosorbent material for green remediation of contaminated water medium.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2024; 26(1):1-10. PubMed ID: 37191258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata.
    Nigam S; Gopal K; Vankar PS
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4000-8. PubMed ID: 23208752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.
    Kausar A; Bhatti HN; MacKinnon G
    Colloids Surf B Biointerfaces; 2013 Nov; 111():124-33. PubMed ID: 23787279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate.
    Brahman KD; Kazi TG; Baig JA; Afridi HI; Arain SS; Saraj S; Arain MB; Arain SA
    Chemosphere; 2016 May; 150():320-328. PubMed ID: 26921585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alkali assisted hydrophobic reinforcement of coconut fiber for enhanced removal of cationic dyes: equilibrium, kinetics, and thermodynamic insight.
    Mohanta J; Kumari R; Qaiyum MA; Dey B; Dey S
    Int J Phytoremediation; 2021; 23(13):1423-1431. PubMed ID: 33813963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).
    Bağda E; Tuzen M; Sarı A
    J Environ Radioact; 2017 Sep; 175-176():7-14. PubMed ID: 28412579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.