These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35014938)

  • 21. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.
    Atthapreyangkul A; Hoffman M; Pearce G; Standard O
    J Mech Behav Biomed Mater; 2023 Feb; 138():105578. PubMed ID: 36427415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Damage tolerance of lamellar bone.
    Razi H; Predan J; Fischer FD; Kolednik O; Fratzl P
    Bone; 2020 Jan; 130():115102. PubMed ID: 31669254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression.
    Olvera D; Zimmermann EA; Ritchie RO
    Bone; 2012 Jan; 50(1):331-6. PubMed ID: 22115793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic short crack growth in cortical bone.
    Hazenberg JG; Taylor D; Lee TC
    Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental validation of a microcracking-based toughening mechanism for cortical bone.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2003 Jan; 36(1):121-4. PubMed ID: 12485646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian cortical bone in tension is non-Haversian.
    Mayya A; Banerjee A; Rajesh R
    Sci Rep; 2013; 3():2533. PubMed ID: 23982482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.
    Ural A; Zioupos P; Buchanan D; Vashishth D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1021-32. PubMed ID: 21783112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture].
    Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):199-204. PubMed ID: 11326832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteonal crack barriers in ovine compact bone.
    Mohsin S; O'Brien FJ; Lee TC
    J Anat; 2006 Jan; 208(1):81-9. PubMed ID: 16420381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and Extended Finite Element Method (XFEM).
    Yadav RN; Uniyal P; Sihota P; Kumar S; Dhiman V; Goni VG; Sahni D; Bhadada SK; Kumar N
    Med Eng Phys; 2021 Jul; 93():100-112. PubMed ID: 34154770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the effects of tensile and compressive loadings on human femur bone.
    Havaldar R; Pilli SC; Putti BB
    Adv Biomed Res; 2014; 3():101. PubMed ID: 24800190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.