These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35015018)

  • 1. Data-driven prediction of grain boundary segregation and disordering in high-entropy alloys in a 5D space.
    Hu C; Luo J
    Mater Horiz; 2022 Mar; 9(3):1023-1035. PubMed ID: 35015018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys.
    Ming K; Li L; Li Z; Bi X; Wang J
    Sci Adv; 2019 Dec; 5(12):eaay0639. PubMed ID: 31840073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic and machine learning studies of solute segregation in metastable grain boundaries.
    Mahmood Y; Alghalayini M; Martinez E; Paredis CJJ; Abdeljawad F
    Sci Rep; 2022 Apr; 12(1):6673. PubMed ID: 35461319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Development of Stable Nanocrystalline High-Entropy Alloy: Coupling Self-Stabilization and Solute Grain Boundary Segregation Effects.
    Adaan-Nyiak MA; Alam I; Jossou E; Hwang S; Kisslinger K; Gill SK; Tiamiyu AA
    Small; 2024 Jul; 20(27):e2309631. PubMed ID: 38312106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Prediction of Strengthening in Nanocrystalline Cu with Multi-Element Grain Boundary Segregation Decoration.
    Guo F; Li C; Fu T; Peng X
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys.
    Vaidya M; Pradeep KG; Murty BS; Wilde G; Divinski SV
    Sci Rep; 2017 Sep; 7(1):12293. PubMed ID: 28947771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain Boundary Wetting by a Second Solid Phase in the High Entropy Alloys: A Review.
    Straumal BB; Korneva A; Lopez GA; Kuzmin A; Rabkin E; Gerstein G; Straumal AB; Gornakova AS
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreasing the grain boundary diffusivity in binary alloys with increasing temperature.
    Shi X; Luo J
    Phys Rev Lett; 2010 Dec; 105(23):236102. PubMed ID: 21231482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning grain boundary segregation energy spectra in polycrystals.
    Wagih M; Larsen PM; Schuh CA
    Nat Commun; 2020 Dec; 11(1):6376. PubMed ID: 33311515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects.
    Wu X; Wang YX; He KN; Li X; Liu W; Zhang Y; Xu Y; Liu C
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of grain boundary structures and energetics in CdTe: a machine-learning potential approach.
    Yokoi T; Adachi K; Iwase S; Matsunaga K
    Phys Chem Chem Phys; 2022 Jan; 24(3):1620-1629. PubMed ID: 34951419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Grain-Boundary Segregation: From First Principles to Polycrystals.
    Wagih M; Schuh CA
    Phys Rev Lett; 2022 Jul; 129(4):046102. PubMed ID: 35939020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals.
    Lee H; Shabani M; Pataky GJ; Abdeljawad F
    Sci Rep; 2021 Jan; 11(1):428. PubMed ID: 33431909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation mechanism in Al
    Liu C; Yang Y; Xia Z
    RSC Adv; 2020 Jul; 10(46):27688-27696. PubMed ID: 35516964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method.
    Hou S; Li Y; Bai M; Sun M; Liu W; Wang C; Tetik H; Lin D
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles.
    Ikeda Y; Körmann F; Tanaka I; Neugebauer J
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO
    Zhou G; Li P; Ma Q; Tian Z; Liu Y
    Nano Lett; 2018 Mar; 18(3):1668-1677. PubMed ID: 29446958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial Segregation has the Potential to Mitigate Liquid Metal Embrittlement in Iron.
    Ahmadian A; Scheiber D; Zhou X; Gault B; Romaner L; Kamachali RD; Ecker W; Dehm G; Liebscher CH
    Adv Mater; 2023 Jul; 35(28):e2211796. PubMed ID: 37030971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Segregation on the Catalytic Properties of AgAuCuPdPt High-Entropy Alloy for CO Reduction Reaction.
    Dahale C; Goverapet Srinivasan S; Rai B
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38044859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
    Yan S; H Qin Q; Zhong Z
    Nanotechnology; 2020 Sep; 31(38):385705. PubMed ID: 32503016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.