BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35015159)

  • 1. Temperature and precipitation changes over the glaciated parts of Indian Himalayan Region during 1901-2016.
    Garg PK; Shukla A; Yousuf B; Garg S
    Environ Monit Assess; 2022 Jan; 194(2):84. PubMed ID: 35015159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal assessment of extreme climate events in Kinnaur district, Himachal Pradesh, north-western Himalaya, India.
    Kanwar N; Kuniyal JC; Rautela KS; Singh L; Pandey DC
    Environ Monit Assess; 2024 May; 196(6):557. PubMed ID: 38764082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-altitude meteorology of Indian Himalayan Region: complexities, effects, and resolutions.
    Yadav JS; Tiwari SK; Misra A; Rai SK; Yadav RK
    Environ Monit Assess; 2021 Sep; 193(10):654. PubMed ID: 34529161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring temperature dynamics in Madhya Pradesh: a spatial-temporal analysis.
    Kumar A; Kumar S; Rautela KS; Kumari A; Shekhar S; Thangavel M
    Environ Monit Assess; 2023 Oct; 195(11):1313. PubMed ID: 37831219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the relative influence of climate and human activities on recent vegetation dynamics in West Bengal, India.
    Banerjee A; Kang S; Meadows ME; Sajjad W; Bahadur A; Ul Moazzam MF; Xia Z; Mango J; Das B; Kirsten KL
    Environ Res; 2024 Jun; 250():118450. PubMed ID: 38360167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960-2019.
    Dong T; Liu J; Liu D; He P; Li Z; Shi M; Xu J
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57316-57330. PubMed ID: 36961640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal trends in mean and extreme climate variables over 1981-2020 in Meki watershed of central rift valley basin, Ethiopia.
    Terefe S; Bantider A; Teferi E; Abi M
    Heliyon; 2022 Nov; 8(11):e11684. PubMed ID: 36439755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case study of rainfall and temperature assessment through trend and homogeneity analyses in Vadodara and Chhotaudepur district of Gujarat State, India.
    Chandole V; Joshi GS
    Environ Monit Assess; 2023 Apr; 195(5):561. PubMed ID: 37052735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water dynamics over a Western Patagonian watershed: Land surface changes and human factors.
    Olivera-Guerra L; Quintanilla M; Moletto-Lobos I; Pichuante E; Zamorano-Elgueta C; Mattar C
    Sci Total Environ; 2022 Jan; 804():150221. PubMed ID: 34798745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.
    Dar RA; Rashid I; Romshoo SA; Marazi A
    Environ Monit Assess; 2014 Apr; 186(4):2549-62. PubMed ID: 24318957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of changes and trends in climatic variables in Bangladesh during 1988-2017.
    Khan MHR; Rahman A; Luo C; Kumar S; Islam GMA; Hossain MA
    Heliyon; 2019 Mar; 5(3):e01268. PubMed ID: 30957035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term annual and seasonal mass balance reconstruction and sensitivity analysis of Chhota Shigri Glacier in Western Himalaya.
    Sahu R; Gupta RD; Ramanathan A; Kumar P; Eidhammer T
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):4910-4924. PubMed ID: 38110678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidences of climate change presences in the wettest parts of southwest Ethiopia.
    Gemeda DO; Korecha D; Garedew W
    Heliyon; 2021 Sep; 7(9):e08009. PubMed ID: 34611559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes.
    Jin H; Jönsson AM; Olsson C; Lindström J; Jönsson P; Eklundh L
    Int J Biometeorol; 2019 Jun; 63(6):763-775. PubMed ID: 30805728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends of climate change in the upper Indus basin region, Pakistan: implications for cryosphere.
    Ali SHB; Shafqat MN; Eqani SAMAS; Shah STA
    Environ Monit Assess; 2019 Jan; 191(2):51. PubMed ID: 30612331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming and Wetting will continue over the Tibetan Plateau in the Shared Socioeconomic Pathways.
    Deng H; Ji Z
    PLoS One; 2023; 18(8):e0289589. PubMed ID: 37540690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges.
    Collins DN; Davenport JL; Stoffel M
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S48-59. PubMed ID: 24296050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based assessment of long-term climate variability of Kerala.
    Vijay A; Varija K
    Environ Monit Assess; 2022 Jun; 194(7):498. PubMed ID: 35695969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial-temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran.
    Kamali A; Khosravi M; Hamidianpour M
    Environ Monit Assess; 2020 Oct; 192(11):718. PubMed ID: 33083919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.