These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 35015305)
21. mfeeU-Net: A multi-scale feature extraction and enhancement U-Net for automatic liver segmentation from CT Images. Liu J; Yan Z; Zhou C; Shao L; Han Y; Song Y Math Biosci Eng; 2023 Feb; 20(5):7784-7801. PubMed ID: 37161172 [TBL] [Abstract][Full Text] [Related]
22. ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation. Gao Q; Almekkawy M Comput Biol Med; 2021 Sep; 136():104688. PubMed ID: 34523421 [TBL] [Abstract][Full Text] [Related]
23. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images. Shao J; Luan S; Ding Y; Xue X; Zhu B; Wei W Technol Cancer Res Treat; 2024; 23():15330338231219366. PubMed ID: 38179668 [No Abstract] [Full Text] [Related]
24. Automatic liver segmentation by integrating fully convolutional networks into active contour models. Guo X; Schwartz LH; Zhao B Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688 [TBL] [Abstract][Full Text] [Related]
25. Densely connected U-Net retinal vessel segmentation algorithm based on multi-scale feature convolution extraction. Du X; Wang J; Sun W Med Phys; 2021 Jul; 48(7):3827-3841. PubMed ID: 34028030 [TBL] [Abstract][Full Text] [Related]
26. SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation. Zhang J; Lv X; Sun Q; Zhang Q; Wei X; Liu B Curr Med Imaging; 2020; 16(6):720-728. PubMed ID: 32723244 [TBL] [Abstract][Full Text] [Related]
27. PA-ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images. Xu Y; Cai M; Lin L; Zhang Y; Hu H; Peng Z; Zhang Q; Chen Q; Mao X; Iwamoto Y; Han XH; Chen YW; Tong R Med Phys; 2021 Jul; 48(7):3752-3766. PubMed ID: 33950526 [TBL] [Abstract][Full Text] [Related]
28. FCRB U-Net: A novel fully connected residual block U-Net for fetal cerebellum ultrasound image segmentation. Shu X; Gu Y; Zhang X; Hu C; Cheng K Comput Biol Med; 2022 Sep; 148():105693. PubMed ID: 35717404 [TBL] [Abstract][Full Text] [Related]
29. MHSU-Net: A more versatile neural network for medical image segmentation. Ma H; Zou Y; Liu PX Comput Methods Programs Biomed; 2021 Sep; 208():106230. PubMed ID: 34148011 [TBL] [Abstract][Full Text] [Related]
30. Compound W-Net with Fully Accumulative Residual Connections for Liver Segmentation Using CT Images. Khattab MA; Liao IY; Ooi EH; Chong SY Comput Math Methods Med; 2022; 2022():8501828. PubMed ID: 35186116 [TBL] [Abstract][Full Text] [Related]
31. ADR-Net: Context extraction network based on M-Net for medical image segmentation. Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963 [TBL] [Abstract][Full Text] [Related]
33. An improved residual U-Net with morphological-based loss function for automatic liver segmentation in computed tomography. Lv P; Wang J; Zhang X; Ji C; Zhou L; Wang H Math Biosci Eng; 2022 Jan; 19(2):1426-1447. PubMed ID: 35135211 [TBL] [Abstract][Full Text] [Related]
34. Multi-scale attention and deep supervision-based 3D UNet for automatic liver segmentation from CT. Wang J; Zhang X; Guo L; Shi C; Tamura S Math Biosci Eng; 2023 Jan; 20(1):1297-1316. PubMed ID: 36650812 [TBL] [Abstract][Full Text] [Related]
35. RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images. Li YZ; Wang Y; Huang YH; Xiang P; Liu WX; Lai QQ; Gao YY; Xu MS; Guo YF Comput Methods Programs Biomed; 2023 Apr; 231():107437. PubMed ID: 36863157 [TBL] [Abstract][Full Text] [Related]
36. Tumor attention networks: Better feature selection, better tumor segmentation. Pang S; Du A; Orgun MA; Wang Y; Yu Z Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873 [TBL] [Abstract][Full Text] [Related]
37. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation. Chen S; Zou Y; Liu PX Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471 [TBL] [Abstract][Full Text] [Related]
38. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images. Liu T; Liu J; Ma Y; He J; Han J; Ding X; Chen CT Med Phys; 2021 Jan; 48(1):264-272. PubMed ID: 33159809 [TBL] [Abstract][Full Text] [Related]
39. RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images. Jiang L; Ou J; Liu R; Zou Y; Xie T; Xiao H; Bai T Comput Biol Med; 2023 May; 158():106838. PubMed ID: 37030263 [TBL] [Abstract][Full Text] [Related]
40. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision. Yang S; Liang Y; Wu S; Sun P; Chen Z J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]