These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 350155)

  • 1. Effect of prior refrigeration on botulinal outgrowth in perishable canned cured meat when temperature abused.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):863-6. PubMed ID: 350155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causes of variation in botulinal inhibition in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):886-9. PubMed ID: 350156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat.
    Christiansen LN; Johnston RW; Kautter DA; Howard JW; Aunan WJ
    Appl Microbiol; 1973 Mar; 25(3):357-62. PubMed ID: 4572891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of Clostridium botulinum in Perishable Canned Cured Meat at Abuse Temperature.
    Christiansen LN; Tompkin RB; Shaparis AB
    J Food Prot; 1978 May; 41(5):354-355. PubMed ID: 30795149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibotulinal efficacy of sulfur dioxide in meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1980 Jun; 39(6):1096-9. PubMed ID: 6996613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse.
    Sofos JN; Busta FF; Allen CE
    Appl Environ Microbiol; 1979 Jun; 37(6):1103-9. PubMed ID: 384904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 Jan; 35(1):59-61. PubMed ID: 341810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef.
    Juneja VK; Purohit AS; Golden M; Osoria M; Glass KA; Mishra A; Thippareddi H; Devkumar G; Mohr TB; Minocha U; Silverman M; Schaffner DW
    Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nisin: a possible alternative or adjunct to nitrite in the preservation of meats.
    Rayman MK; Aris B; Hurst A
    Appl Environ Microbiol; 1981 Feb; 41(2):375-80. PubMed ID: 7195188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and the antibotulinal efficacy of nitrite.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1979 Feb; 37(2):351-3. PubMed ID: 107856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonproteolytic Clostridium botulinum toxigenesis in cooked turkey stored under modified atmospheres.
    Lawlor KA; Pierson MD; Hackney CR; Claus JR; Marcy JE
    J Food Prot; 2000 Nov; 63(11):1511-6. PubMed ID: 11079692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Survey of pH and water activity in acidified bottled vegetables and meats (home processed) in relation to the potential growth of Clostridium botulinum].
    Mazzobre MF; Schebor C; Burin L; Chirife J
    Rev Argent Microbiol; 2000; 32(2):63-70. PubMed ID: 10885005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat.
    Moorhead SM; Bell RG
    Lett Appl Microbiol; 1999 Feb; 28(2):108-12. PubMed ID: 10063639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of thermal inactivation of Clostridium botulinum spores during rice cooking.
    Konagaya Y; Urakami H; Hoshino J; Kobayashi A; Sasagawa A; Yamazaki A; Kozaki S; Tanaka N
    J Food Prot; 2009 Nov; 72(11):2400-6. PubMed ID: 19903408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature.
    Evans RI; Russell NJ; Gould GW; McClure PJ
    J Appl Microbiol; 1997 Sep; 83(3):273-80. PubMed ID: 9351207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.