BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 35015517)

  • 1. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects.
    Hao Y; Wang S; Xu F; Liu Y; Feng N; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33735-33739. PubMed ID: 28945345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li
    Li Q; Wang X; Wang L; Zhu S; Zhong Q; Li Y; Zhou Q
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries.
    Hou G; Ma X; Sun Q; Ai Q; Xu X; Chen L; Li D; Chen J; Zhong H; Li Y; Xu Z; Si P; Feng J; Zhang L; Ding F; Ci L
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18610-18618. PubMed ID: 29758163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Performance and Microstructure Evolution of a Quasi-Solid-State Lithium Battery Prepared by Spark Plasma Sintering.
    Li J; Tong H; Zhou W; Liu J; Song X
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8045-8054. PubMed ID: 38316124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of SnO
    Song J; Zhang C; Zheng Z; Huo S; Lin Y; Yang F; Liu L
    J Colloid Interface Sci; 2024 Jun; 663():132-142. PubMed ID: 38394818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.
    Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB
    J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrically coated LAGP/PP/PVDF-HFP composite separator film and its effect on the improvement of NCM battery performance.
    Liang T; Cao JH; Liang WH; Li Q; He L; Wu DY
    RSC Adv; 2019 Dec; 9(70):41151-41160. PubMed ID: 35540032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries.
    Wang C; Yang Y; Liu X; Zhong H; Xu H; Xu Z; Shao H; Ding F
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13694-13702. PubMed ID: 28334524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium-Sulfur Batteries.
    Wei Y; Hu F; Li Y; Yang J; Wang W; Yuan L; Zhang W; Li Z; Huang Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39335-39341. PubMed ID: 32786252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Quasi-Solid-State Composite Electrolyte of Poly (Propylene Glycol)-co-Pentaerythritol Triacry-Late/Li
    Deng Z; Zheng Z; Ruan W; Zhang M
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO
    Cheng T; Cheng Q; He Y; Ge M; Feng Z; Li P; Huang Y; Zheng J; Lyu Y; Guo B
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42917-42926. PubMed ID: 34478622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melamine-Regulated Ceramic/Polymer Electrolyte Interface Promotes High Stability in Lithium-Metal Battery.
    Liang Y; Chen N; Li F; Chen R
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47822-47830. PubMed ID: 36227175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO
    Ren X; Zhang X; Shadike Z; Zou L; Jia H; Cao X; Engelhard MH; Matthews BE; Wang C; Arey BW; Yang XQ; Liu J; Zhang JG; Xu W
    Adv Mater; 2020 Dec; 32(49):e2004898. PubMed ID: 33150628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing interfacial resistance of a Li
    Wang L; Liu D; Huang T; Geng Z; Yu A
    RSC Adv; 2020 Mar; 10(17):10038-10045. PubMed ID: 35498566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construct an Ultrathin Bismuth Buffer for Stable Solid-State Lithium Metal Batteries.
    Hu F; Li Y; Wei Y; Yang J; Hu P; Rao Z; Chen X; Yuan L; Li Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12793-12800. PubMed ID: 32091867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Formation of a LiF-Carbon Layer as an Artificial Cathodic Electrolyte Interphase through Encapsulation of a Cathode with Carbon Monofluoride.
    Lim JH; Myung Y; Yang M; Lee JW
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31741-31748. PubMed ID: 34185502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V.
    Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale-engineered LiCoO
    Jayasree SS; Nair S; Santhanagopalan D
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.