BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35015545)

  • 1. Importance of the Subunit-Subunit Interface in Ferritin Disassembly: A Molecular Dynamics Study.
    Li Z; Maity B; Hishikawa Y; Ueno T; Lu D
    Langmuir; 2022 Jan; 38(3):1106-1113. PubMed ID: 35015545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution.
    Maity B; Li Z; Niwase K; Ganser C; Furuta T; Uchihashi T; Lu D; Ueno T
    Phys Chem Chem Phys; 2020 Sep; 22(33):18562-18572. PubMed ID: 32785391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.
    Theil EC; Turano P; Ghini V; Allegrozzi M; Bernacchioni C
    J Biol Inorg Chem; 2014 Jun; 19(4-5):615-22. PubMed ID: 24504941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Flexibility and Disassembly Kinetics of Single Ferritin Molecules Using Optical Nanotweezers.
    Yousefi A; Zheng Z; Zargarbashi S; Assadipapari M; Hickman GJ; Parmenter CDJ; Bueno-Alejo CJ; Sanderson G; Craske D; Xu L; Perry CC; Rahmani M; Ying C
    ACS Nano; 2024 Jun; 18(24):15617-15626. PubMed ID: 38850556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage.
    Sana B; Johnson E; Lim S
    Biochim Biophys Acta; 2015 Dec; 1850(12):2544-51. PubMed ID: 26341788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A short helix regulates conversion of dimeric and 24-meric ferritin architectures.
    Liu Y; Zang J; Leng X; Zhao G
    Int J Biol Macromol; 2022 Apr; 203():535-542. PubMed ID: 35120932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly.
    Huard DJ; Kane KM; Tezcan FA
    Nat Chem Biol; 2013 Mar; 9(3):169-76. PubMed ID: 23340339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent structures of ferritin and apoferritin in solution: disassembly and reassembly.
    Kim M; Rho Y; Jin KS; Ahn B; Jung S; Kim H; Ree M
    Biomacromolecules; 2011 May; 12(5):1629-40. PubMed ID: 21446722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH.
    Katz BA
    J Mol Biol; 1997 Dec; 274(5):776-800. PubMed ID: 9405158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins.
    Santambrogio P; Levi S; Arosio P; Palagi L; Vecchio G; Lawson DM; Yewdall SJ; Artymiuk PJ; Harrison PM; Jappelli R
    J Biol Chem; 1992 Jul; 267(20):14077-83. PubMed ID: 1629207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit dimers in sheep spleen apoferritin. The effect on iron storage.
    Mertz JR; Theil EC
    J Biol Chem; 1983 Oct; 258(19):11719-26. PubMed ID: 6619139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unusual dodecameric ferritin from Listeria innocua dissociates below pH 2.0.
    Chiaraluce R; Consalvi V; Cavallo S; Ilari A; Stefanini S; Chiancone E
    Eur J Biochem; 2000 Sep; 267(18):5733-41. PubMed ID: 10971584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Role of the Hv1 C-Terminal Domain in Dimer Stabilization.
    Boonamnaj P; Sompornpisut P
    J Phys Chem B; 2018 Jan; 122(3):1037-1048. PubMed ID: 29290112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Iron(II) Release Mechanism of Human H-Ferritin as a Function of pH.
    Sala D; Ciambellotti S; Giachetti A; Turano P; Rosato A
    J Chem Inf Model; 2017 Sep; 57(9):2112-2118. PubMed ID: 28853891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics simulation of soybean agglutinin (SBA) dimer reveals the impact of glycosylation on its enhanced structural stability.
    Halder S; Surolia A; Mukhopadhyay C
    Carbohydr Res; 2016 Jun; 428():8-17. PubMed ID: 27108103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-triggered disassembly in a caged protein complex.
    Dalmau M; Lim S; Wang SW
    Biomacromolecules; 2009 Dec; 10(12):3199-206. PubMed ID: 19874026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-Interface Binding of Two Bioactive Compounds with Cage-Like Ferritin.
    Meng D; Chen S; Liu J; Wang Q; Wang D; Liu M; Zhou Z; Yang R
    J Agric Food Chem; 2020 Jul; 68(29):7779-7788. PubMed ID: 32545959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and subunit analysis of ferritin isolated from normal and malignant human liver.
    Alpert E
    Cancer Res; 1975 Jun; 35(6):1505-9. PubMed ID: 236822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single residue can modulate nanocage assembly in salt dependent ferritin.
    Kumar M; Markiewicz-Mizera J; Janna Olmos JD; Wilk P; Grudnik P; Biela AP; Jemioła-Rzemińska M; Górecki A; Chakraborti S; Heddle JG
    Nanoscale; 2021 Jul; 13(27):11932-11942. PubMed ID: 34195748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.