These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35015549)

  • 1. Variable Temperature Neutron Diffraction Study of the Oxide Ion Conductor Ba
    Gilane A; Fop S; Tawse DN; Ritter C; Mclaughlin AC
    Inorg Chem; 2022 Jan; 61(3):1597-1602. PubMed ID: 35015549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the Crystal Structure and Electrical Properties of Oxide Ion Conducting Ba
    McCombie KS; Wildman EJ; Ritter C; Smith RI; Skakle JMS; Mclaughlin AC
    Inorg Chem; 2018 Oct; 57(19):11942-11947. PubMed ID: 30207462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Oxide Ion Conductivity by Ta Doping of Ba
    Sherwood B; Wildman EJ; Smith RI; Mclaughlin AC
    Inorg Chem; 2023 Jan; 62(4):1628-1635. PubMed ID: 36650095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Crystal Structure and Ionic Pathways of the Hexagonal Perovskite Derivative Ba
    Tawse DN; Gilane A; Fop S; Martinez-Felipe A; Sher F; Smith RI; Mclaughlin AC
    Inorg Chem; 2021 Sep; 60(17):13550-13556. PubMed ID: 34405996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of vanadium substitution in the oxygen sublattice disorder of Ba
    Biffo AO; Famprikis T; Groszewicz PB
    J Mater Chem A Mater; 2024 Nov; 12(43):30082-30095. PubMed ID: 39430313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxide Ion Conductivity in the Hexagonal Perovskite Derivative Ba
    Fop S; Skakle JM; McLaughlin AC; Connor PA; Irvine JT; Smith RI; Wildman EJ
    J Am Chem Soc; 2016 Dec; 138(51):16764-16769. PubMed ID: 27976879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Oxide-Ion Conductivity in a Hexagonal Perovskite-Related Oxide Ba
    Murakami T; Shibata T; Yasui Y; Fujii K; Hester JR; Yashima M
    Small; 2022 Mar; 18(10):e2106785. PubMed ID: 34923747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases.
    Dahlqvist M; Rosen J
    Nanoscale; 2020 Jan; 12(2):785-794. PubMed ID: 31830199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural origin of the enhanced ionic conductivity upon Nb doping in Sr
    Miranda CD; López CA; Pedregosa JC; Alonso JA
    Dalton Trans; 2017 Mar; 46(12):3934-3942. PubMed ID: 28265637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the oxide-ionic conductivity of Ba
    Cheng Z; Yang J; Jiang P; Huang H; da-Silva I; Gao W; Cong R; Yang T
    Dalton Trans; 2021 Nov; 50(46):17249-17256. PubMed ID: 34786583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallography of Chevrel phases, MMo6T8 (M = Cd, Na, Mn, and Zn, T = S, Se) and their cation mobility.
    Levi E; Gershinsky G; Aurbach D; Isnard O
    Inorg Chem; 2009 Sep; 48(18):8751-8. PubMed ID: 19705855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1:1:1 triple-cation B-site-ordered and oxygen-deficient perovskite Ca4GaNbO8: a member of a family of anion-vacancy-based cation-ordered complex perovskites.
    Yang T; Claridge JB; Rosseinsky MJ
    Inorg Chem; 2013 Apr; 52(7):3795-802. PubMed ID: 23517537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. La10W2O21: an anion-deficient fluorite-related superstructure with oxide ion conduction.
    Chambrier MH; Le Bail A; Giovannelli F; Redjaïmia A; Florian P; Massiot D; Suard E; Goutenoire F
    Inorg Chem; 2014 Jan; 53(1):147-59. PubMed ID: 24387745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermochemistry of cation disordered Li ion battery cathode materials, (M' = Nb and Ta, M'' = Mn and Fe).
    Subramani T; Navrotsky A
    RSC Adv; 2020 Feb; 10(11):6540-6546. PubMed ID: 35495992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular construction of oxide structures--compositional control of transition metal coordination environments.
    Tenailleau C; Allix M; Claridge JB; Hervieu M; Thomas MF; Hirst JP; Rosseinsky MJ
    J Am Chem Soc; 2008 Jun; 130(24):7570-83. PubMed ID: 18505254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers.
    Anasori B; Shi C; Moon EJ; Xie Y; Voigt CA; Kent PRC; May SJ; Billinge SJL; Barsoum MW; Gogotsi Y
    Nanoscale Horiz; 2016 May; 1(3):227-234. PubMed ID: 32260625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Reduction of Proton Conductivity and Enhancement of Oxide-Ion Conductivity by Aliovalent Doping in Ba
    Suzuki Y; Murakami T; Fujii K; Hester JR; Yasui Y; Yashima M
    Inorg Chem; 2022 May; 61(19):7537-7545. PubMed ID: 35504293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Correlation between Oxide Ion Mobility and Site Distributions in Ba
    Auckett JE; Gutmann MJ; Evans IR
    Inorg Chem; 2020 Oct; 59(19):14245-14250. PubMed ID: 32969646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-investigation of the structure and crystal chemistry of the Bi2O3-W2O6 'type (Ib)' solid solution using single-crystal neutron and synchrotron X-ray diffraction.
    Sharma N; Macquart RB; Avdeev M; Christensen M; McIntyre GJ; Chen YS; Ling CD
    Acta Crystallogr B; 2010 Apr; 66(Pt 2):165-72. PubMed ID: 20305350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Interplay of Vacancy, Cation, and Charge Ordering in the Tunable Sc
    Vrublevskiy D; Lussier JA; Panchuk JR; Mauws C; Beam JC; Wiebe CR; Grosvenor AP; Bieringer M
    Inorg Chem; 2021 Jan; 60(2):872-882. PubMed ID: 33355450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.