These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35015733)

  • 41. Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions.
    Buchholz B; Donato M; Perez V; Deutsch ACR; Höcht C; Del Mauro JS; Rodríguez M; Gelpi RJ
    Pflugers Arch; 2015 Jul; 467(7):1509-1522. PubMed ID: 25127674
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Stratification of patients at risk for sudden cardiac death with special reference to the autonomic nervous system].
    Hohnloser SH; Klingenheben T
    Z Kardiol; 1996; 85 Suppl 6():35-43. PubMed ID: 9064981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of the autonomic nervous system on the genesis of cardiac arrhythmias.
    Zipes DP; Barber MJ; Takahashi N; Gilmour RF
    Pacing Clin Electrophysiol; 1983 Sep; 6(5 Pt 2):1210-20. PubMed ID: 6195641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs.
    Nassenstein C; Taylor-Clark TE; Myers AC; Ru F; Nandigama R; Bettner W; Undem BJ
    J Physiol; 2010 Dec; 588(Pt 23):4769-83. PubMed ID: 20937710
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning.
    Donato M; Buchholz B; Rodríguez M; Pérez V; Inserte J; García-Dorado D; Gelpi RJ
    Exp Physiol; 2013 Feb; 98(2):425-34. PubMed ID: 22872660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purinergic P2X receptors mediate excitatory transmission to cardiac vagal neurons in the nucleus ambiguus after hypoxia.
    Griffioen KJ; Gorini C; Jameson H; Mendelowitz D
    Hypertension; 2007 Jul; 50(1):75-81. PubMed ID: 17470721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiocardiac excitatory reflexes during myocardial ischemia.
    Malliani A
    Basic Res Cardiol; 1990; 85 Suppl 1():243-52. PubMed ID: 2091606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protease-dependent excitation of nodose ganglion neurons by commensal gut bacteria.
    Pradhananga S; Tashtush AA; Allen-Vercoe E; Petrof EO; Lomax AE
    J Physiol; 2020 Jun; 598(11):2137-2151. PubMed ID: 32134496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vagal, sympathetic and somatic sensory inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys.
    Chandler MJ; Zhang J; Foreman RD
    J Neurophysiol; 1996 Oct; 76(4):2555-67. PubMed ID: 8899627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Propofol modulates gamma-aminobutyric acid-mediated inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Wang X; Huang ZG; Gold A; Bouairi E; Evans C; Andresen MC; Mendelowitz D
    Anesthesiology; 2004 May; 100(5):1198-205. PubMed ID: 15114218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat.
    Helke CJ; Hill KM
    Neuroscience; 1988 Aug; 26(2):539-51. PubMed ID: 2459628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Denervation of vagal cardiopulmonary receptors by injection of kainic acid into the nodose ganglia in dogs.
    Wallick DW; Dunlap ME; Stuesse SS; Thames MD
    Auton Neurosci; 2002 Nov; 102(1-2):85-9. PubMed ID: 12492140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Excitotoxin-induced degeneration of rat vagal afferent neurons.
    Lewis SJ; Verberne AJ; Louis CJ; Jarrott B; Beart PM; Louis WJ
    Neuroscience; 1990; 34(2):331-9. PubMed ID: 2333146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction.
    Casadei B; Pipilis A; Sessa F; Conway J; Sleight P
    Circulation; 1993 Aug; 88(2):353-7. PubMed ID: 8339398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of autonomic neural influences on the cardiovascular changes induced by coronary occlusion.
    Corr PB; Gillis RA
    Am Heart J; 1975 Jun; 89(6):767-74. PubMed ID: 1130269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural basis for the genesis and control of arrhythmias associated with myocardial infarction.
    Kent KM; Epstein SE
    Cardiology; 1976; 61(1):61-74. PubMed ID: 788902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Bateman RJ; Boychuk CR; Philbin KE; Mendelowitz D
    Neuroscience; 2012 May; 210():58-66. PubMed ID: 22425752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus.
    Dergacheva O; Wang X; Huang ZG; Bouairi E; Stephens C; Gorini C; Mendelowitz D
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1322-7. PubMed ID: 15947034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Primary PCI is associated with different cardiac autonomic patterns in relation to the site of myocardial infarction.
    Tobaldini E; Fiorelli EM; Prado M; Wu MA; Queiroz A; Kara T; Costantino G; Belloni A; Campi L; Danna P; Sala R; Viecca M; Montano N
    Eur J Intern Med; 2015 Dec; 26(10):792-7. PubMed ID: 26507302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons.
    Herrity AN; Petruska JC; Stirling DP; Rau KK; Hubscher CH
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun; 308(12):R1021-33. PubMed ID: 25855310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.