These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35015814)

  • 1. Functional analysis of the stable phosphoproteome reveals cancer vulnerabilities.
    Xiao D; Kim HJ; Pang I; Yang P
    Bioinformatics; 2022 Mar; 38(7):1956-1963. PubMed ID: 35015814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning empowers phosphoproteome prediction in cancers.
    Li H; Guan Y
    Bioinformatics; 2020 Feb; 36(3):859-864. PubMed ID: 31410451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of co-phosphorylation networks.
    Ayati M; Yılmaz S; Chance MR; Koyuturk M
    Bioinformatics; 2022 Aug; 38(15):3785-3793. PubMed ID: 35731218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application].
    Zhang B; Wang C; Guo M; Xiao H
    Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphomatics: interactive interrogation of substrate-kinase networks in global phosphoproteomics datasets.
    Leeming MG; O'Callaghan S; Licata L; Iannuccelli M; Lo Surdo P; Micarelli E; Ang CS; Nie S; Varshney S; Ameen S; Cheng HC; Williamson NA
    Bioinformatics; 2021 Jul; 37(11):1635-1636. PubMed ID: 33119075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases.
    Deznabi I; Arabaci B; Koyutürk M; Tastan O
    Bioinformatics; 2020 Jun; 36(12):3652-3661. PubMed ID: 32044914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphonormalizer: an R package for normalization of MS-based label-free phosphoproteomics.
    Saraei S; Suomi T; Kauko O; Elo LL; Stegle O
    Bioinformatics; 2018 Feb; 34(4):693-694. PubMed ID: 28968644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating experimental bias and completeness in comparative phosphoproteomics analysis.
    Boekhorst J; Boersema PJ; Tops BB; van Breukelen B; Heck AJ; Snel B
    PLoS One; 2011; 6(8):e23276. PubMed ID: 21853102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.
    Olsen JV; Vermeulen M; Santamaria A; Kumar C; Miller ML; Jensen LJ; Gnad F; Cox J; Jensen TS; Nigg EA; Brunak S; Mann M
    Sci Signal; 2010 Jan; 3(104):ra3. PubMed ID: 20068231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPUTNIK: an R package for filtering of spatially related peaks in mass spectrometry imaging data.
    Inglese P; Correia G; Takats Z; Nicholson JK; Glen RC
    Bioinformatics; 2019 Jan; 35(1):178-180. PubMed ID: 30010780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
    Macek B; Gnad F; Soufi B; Kumar C; Olsen JV; Mijakovic I; Mann M
    Mol Cell Proteomics; 2008 Feb; 7(2):299-307. PubMed ID: 17938405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CONTRABASS: exploiting flux constraints in genome-scale models for the detection of vulnerabilities.
    Oarga A; Bannerman BP; Júlvez J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes.
    Boekhorst J; van Breukelen B; Heck A; Snel B
    Genome Biol; 2008 Oct; 9(10):R144. PubMed ID: 18828897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SimPhospho: a software tool enabling confident phosphosite assignment.
    Suni V; Suomi T; Tsubosaka T; Imanishi SY; Elo LL; Corthals GL
    Bioinformatics; 2018 Aug; 34(15):2690-2692. PubMed ID: 29596608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CroCo cross-link converter: a user-centred tool to convert results from cross-linking mass spectrometry experiments.
    Bender J; Schmidt C
    Bioinformatics; 2020 Feb; 36(4):1296-1297. PubMed ID: 31562766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.
    Chaudhuri R; Sadrieh A; Hoffman NJ; Parker BL; Humphrey SJ; Stöckli J; Hill AP; James DE; Yang JY
    BMC Genomics; 2015 Aug; 16(1):617. PubMed ID: 26283093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy modeling and global optimization to predict novel therapeutic targets in cancer cells.
    Nobile MS; Votta G; Palorini R; Spolaor S; De Vitto H; Cazzaniga P; Ricciardiello F; Mauri G; Alberghina L; Chiaradonna F; Besozzi D
    Bioinformatics; 2020 Apr; 36(7):2181-2188. PubMed ID: 31750879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.