These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35015928)

  • 41. Synthesis of CoP@B,N,P co-doped porous carbon by a supramolecular gel self-assembly method for lithium-sulfur battery separator modification.
    Shi Z; Huang Y; Xu J; Pang Y; Wang L; Zhao W; Yue H; Yang Z; Yang S; Yin Y
    Dalton Trans; 2023 Jun; 52(24):8284-8293. PubMed ID: 37254965
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vanadium Nitride Quantum Dots/Holey Graphene Matrix Boosting Adsorption and Conversion Reaction Kinetics for High-Performance Lithium-Sulfur Batteries.
    Li F; Zhang M; Chen W; Cai X; Rao H; Chang J; Fang Y; Zhong X; Yang Y; Yang Z; Yu X
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30746-30755. PubMed ID: 34170655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability.
    Zhao Q; Bao X; Meng L; Dong S; Zhang Y; Qing C; Zhu T; Wang HE
    J Colloid Interface Sci; 2023 Aug; 644():546-555. PubMed ID: 37012112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries.
    Niu S; Lv W; Zhou G; He Y; Li B; Yang QH; Kang F
    Chem Commun (Camb); 2015 Dec; 51(100):17720-3. PubMed ID: 26490706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Xia J; Wang X; Xiang K; Zeng P; Zhang Y; Jamil S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13562-13572. PubMed ID: 29616796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-performance lithium-sulfur batteries enabled by regulating Li
    Lin Q; Huang L; Liu W; Li Z; Fang R; Wang DW; Yang QH; Lv W
    Phys Chem Chem Phys; 2021 Oct; 23(38):21385-21398. PubMed ID: 34549210
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium-Sulfur Batteries.
    Hu X; Zhu X; Ran Z; Liu S; Zhang Y; Wang H; Wei W
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic Effects in Lithium-Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect.
    Liu D; Zhang C; Zhou G; Lv W; Ling G; Zhi L; Yang QH
    Adv Sci (Weinh); 2018 Jan; 5(1):1700270. PubMed ID: 29375960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries.
    Dong C; Gao W; Jin B; Jiang Q
    iScience; 2018 Aug; 6():151-198. PubMed ID: 30240609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Facile Immobilization Strategy for Soluble Phosphazene to Actualize Stable and Safe Lithium-Sulfur Batteries.
    Zhu T; Chen D; Liu G; Qi P; Gu X; Li H; Sun J; Zhang S
    Small; 2022 Sep; 18(38):e2203693. PubMed ID: 36007148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Perspectives on Advanced Lithium-Sulfur Batteries for Electric Vehicles and Grid-Scale Energy Storage.
    Ni W
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transition Metal Phosphides: The Rising Star of Lithium-Sulfur Battery Cathode Host.
    Liu L; Yin X; Li W; Wang D; Duan J; Wang X; Zhang Y; Peng D; Zhang Y
    Small; 2024 Apr; 20(17):e2308564. PubMed ID: 38049201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries.
    Zhao Y; Ye Y; Wu F; Li Y; Li L; Chen R
    Adv Mater; 2019 Mar; 31(12):e1806532. PubMed ID: 30672032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defect-rich Mo
    Huang X; Sha W; He S; Zhao L; Li S; Lv C; Lou C; Xu X; Wang J; Pan H
    Nanoscale; 2023 May; 15(17):7870-7876. PubMed ID: 37060152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lotus Root-Like Nitrogen-Doped Carbon Nanofiber Structure Assembled with VN Catalysts as a Multifunctional Host for Superior Lithium-Sulfur Batteries.
    Wei B; Shang C; Pan X; Chen Z; Shui L; Wang X; Zhou G
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31816900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.
    Zhang X; Xie D; Zhong Y; Wang D; Wu J; Wang X; Xia X; Gu C; Tu J
    Chemistry; 2017 Aug; 23(44):10610-10615. PubMed ID: 28580678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multifunctional solution to enhance capacity and stability in lithium-sulfur batteries: Incorporating hollow CeO
    Lv Y; Su Z; Qiu L; Liu Z; Bai B; Yuan Y; Du P
    J Colloid Interface Sci; 2024 Jun; 674():873-883. PubMed ID: 38955018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries.
    Li C; Xi Z; Guo D; Chen X; Yin L
    Small; 2018 Jan; 14(4):. PubMed ID: 29235726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.