BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 35016005)

  • 1. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy.
    Xie XP; Laks DR; Sun D; Ganbold M; Wang Z; Pedraza AM; Bale T; Tabar V; Brennan C; Zhou X; Parada LF
    Dev Cell; 2022 Jan; 57(1):32-46.e8. PubMed ID: 35016005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance.
    Atkins RJ; Stylli SS; Kurganovs N; Mangiola S; Nowell CJ; Ware TM; Corcoran NM; Brown DV; Kaye AH; Morokoff A; Luwor RB; Hovens CM; Mantamadiotis T
    Exp Cell Res; 2019 Jan; 374(2):353-364. PubMed ID: 30562483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
    Tejero R; Huang Y; Katsyv I; Kluge M; Lin JY; Tome-Garcia J; Daviaud N; Wang Y; Zhang B; Tsankova NM; Friedel CC; Zou H; Friedel RH
    EBioMedicine; 2019 Apr; 42():252-269. PubMed ID: 30952620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature.
    Kristoffersen K; Nedergaard MK; Villingshøj M; Borup R; Broholm H; Kjær A; Poulsen HS; Stockhausen MT
    Cancer Biol Ther; 2014 Jul; 15(7):862-77. PubMed ID: 24755988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model.
    Lee G; Auffinger B; Guo D; Hasan T; Deheeger M; Tobias AL; Kim JY; Atashi F; Zhang L; Lesniak MS; James CD; Ahmed AU
    Mol Cancer Ther; 2016 Dec; 15(12):3064-3076. PubMed ID: 27765847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation.
    Yuan M; Eberhart CG; Kai M
    Oncotarget; 2014 May; 5(9):2820-6. PubMed ID: 24811242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma.
    Yen SY; Chuang HM; Huang MH; Lin SZ; Chiou TW; Harn HJ
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal.
    Lulli V; Buccarelli M; Martini M; Signore M; Biffoni M; Giannetti S; Morgante L; Marziali G; Ilari R; Pagliuca A; Larocca LM; De Maria R; Pallini R; Ricci-Vitiani L
    Oncotarget; 2015 Nov; 6(35):37241-56. PubMed ID: 26437223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance.
    Hersh DS; Harder BG; Roos A; Peng S; Heath JE; Legesse T; Kim AJ; Woodworth GF; Tran NL; Winkles JA
    Neuro Oncol; 2018 Sep; 20(10):1321-1330. PubMed ID: 29897522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma.
    Ashizawa T; Miyata H; Iizuka A; Komiyama M; Oshita C; Kume A; Nogami M; Yagoto M; Ito I; Oishi T; Watanabe R; Mitsuya K; Matsuno K; Furuya T; Okawara T; Otsuka M; Ogo N; Asai A; Nakasu Y; Yamaguchi K; Akiyama Y
    Int J Oncol; 2013 Jul; 43(1):219-27. PubMed ID: 23612755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of octamer binding transcription factors in glioblastoma multiforme.
    Rooj AK; Bronisz A; Godlewski J
    Biochim Biophys Acta; 2016 Jun; 1859(6):805-11. PubMed ID: 26968235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.
    Rosa P; Sforna L; Carlomagno S; Mangino G; Miscusi M; Pessia M; Franciolini F; Calogero A; Catacuzzeno L
    J Cell Physiol; 2017 Sep; 232(9):2478-2488. PubMed ID: 27606467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells.
    Mazor G; Levin L; Picard D; Ahmadov U; Carén H; Borkhardt A; Reifenberger G; Leprivier G; Remke M; Rotblat B
    Cell Death Dis; 2019 Mar; 10(3):246. PubMed ID: 30867410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.
    Jensen SS; Meyer M; Petterson SA; Halle B; Rosager AM; Aaberg-Jessen C; Thomassen M; Burton M; Kruse TA; Kristensen BW
    PLoS One; 2016; 11(7):e0159746. PubMed ID: 27454178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDC20 maintains tumor initiating cells.
    Xie Q; Wu Q; Mack SC; Yang K; Kim L; Hubert CG; Flavahan WA; Chu C; Bao S; Rich JN
    Oncotarget; 2015 May; 6(15):13241-54. PubMed ID: 25938542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells.
    Podergajs N; Motaln H; Rajčević U; Verbovšek U; Koršič M; Obad N; Espedal H; Vittori M; Herold-Mende C; Miletic H; Bjerkvig R; Turnšek TL
    Oncotarget; 2016 Jan; 7(1):593-609. PubMed ID: 26573230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aberrant self-renewal and quiescence contribute to the aggressiveness of glioblastoma.
    Campos B; Gal Z; Baader A; Schneider T; Sliwinski C; Gassel K; Bageritz J; Grabe N; von Deimling A; Beckhove P; Mogler C; Goidts V; Unterberg A; Eckstein V; Herold-Mende C
    J Pathol; 2014 Sep; 234(1):23-33. PubMed ID: 24756862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BET bromodomain proteins are required for glioblastoma cell proliferation.
    Pastori C; Daniel M; Penas C; Volmar CH; Johnstone AL; Brothers SP; Graham RM; Allen B; Sarkaria JN; Komotar RJ; Wahlestedt C; Ayad NG
    Epigenetics; 2014 Apr; 9(4):611-20. PubMed ID: 24496381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells.
    Volovetz J; Berezovsky AD; Alban T; Chen Y; Lauko A; Aranjuez GF; Burtscher A; Shibuya K; Silver DJ; Peterson J; Manor D; McDonald JA; Lathia JD
    Cell Death Dis; 2020 Feb; 11(2):152. PubMed ID: 32102991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.