BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35016008)

  • 1. Different encoding of reward location in dorsal and intermediate hippocampus.
    Jarzebowski P; Hay YA; Grewe BF; Paulsen O
    Curr Biol; 2022 Feb; 32(4):834-841.e5. PubMed ID: 35016008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insensitivity of Place Cells to the Value of Spatial Goals in a Two-Choice Flexible Navigation Task.
    Duvelle É; Grieves RM; Hok V; Poucet B; Arleo A; Jeffery KJ; Save E
    J Neurosci; 2019 Mar; 39(13):2522-2541. PubMed ID: 30696727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dedicated Population for Reward Coding in the Hippocampus.
    Gauthier JL; Tank DW
    Neuron; 2018 Jul; 99(1):179-193.e7. PubMed ID: 30008297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjunctive reward-place coding properties of dorsal distal CA1 hippocampus cells.
    Xiao Z; Lin K; Fellous JM
    Biol Cybern; 2020 Apr; 114(2):285-301. PubMed ID: 32266474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal CA1 activity correlated with the distance to the goal and navigation performance.
    Spiers HJ; Olafsdottir HF; Lever C
    Hippocampus; 2018 Sep; 28(9):644-658. PubMed ID: 29149774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning.
    Kaufman AM; Geiller T; Losonczy A
    Neuron; 2020 Mar; 105(6):1018-1026.e4. PubMed ID: 31980319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal place cells have goal-oriented vector fields during navigation.
    Ormond J; O'Keefe J
    Nature; 2022 Jul; 607(7920):741-746. PubMed ID: 35794477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple coordinated cellular dynamics mediate CA1 map plasticity.
    Mizuta K; Nakai J; Hayashi Y; Sato M
    Hippocampus; 2021 Mar; 31(3):235-243. PubMed ID: 33452849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.
    Danielson NB; Zaremba JD; Kaifosh P; Bowler J; Ladow M; Losonczy A
    Neuron; 2016 Aug; 91(3):652-65. PubMed ID: 27397517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release.
    Retailleau A; Morris G
    Curr Biol; 2018 Mar; 28(6):836-846.e4. PubMed ID: 29502949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Hippocampal Spatial Decoding Using a Dynamic Q-Learning Method With a Relative Reward Using Theta Phase Precession.
    Chen BW; Yang SH; Lo YC; Wang CF; Wang HL; Hsu CY; Kuo YT; Chen JC; Lin SH; Pan HC; Lee SW; Yu X; Qu B; Kuo CH; Chen YY; Lai HY
    Int J Neural Syst; 2020 Sep; 30(9):2050048. PubMed ID: 32787635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSD-95 in CA1 Area Regulates Spatial Choice Depending on Age.
    Cały A; Śliwińska MA; Ziółkowska M; Łukasiewicz K; Pagano R; Dzik JM; Kalita K; Bernaś T; Stewart MG; Giese KP; Radwanska K
    J Neurosci; 2021 Mar; 41(11):2329-2343. PubMed ID: 33472821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations.
    Forro T; Valenti O; Lasztoczi B; Klausberger T
    Cereb Cortex; 2015 May; 25(5):1228-40. PubMed ID: 24275828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distal CA1 Maintains a More Coherent Spatial Representation than Proximal CA1 When Local and Global Cues Conflict.
    Deshmukh SS
    J Neurosci; 2021 Nov; 41(47):9767-9781. PubMed ID: 34670850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Place field assembly distribution encodes preferred locations.
    Mamad O; Stumpp L; McNamara HM; Ramakrishnan C; Deisseroth K; Reilly RB; Tsanov M
    PLoS Biol; 2017 Sep; 15(9):e2002365. PubMed ID: 28898248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model for spatial cognition combining dorsal and ventral hippocampal place field maps: multiscale navigation.
    Scleidorovich P; Llofriu M; Fellous JM; Weitzenfeld A
    Biol Cybern; 2020 Apr; 114(2):187-207. PubMed ID: 31915905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in reward biased spatial representations in the lateral septum and hippocampus.
    Wirtshafter HS; Wilson MA
    Elife; 2020 May; 9():. PubMed ID: 32452763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial representations of self and other in the hippocampus.
    Danjo T; Toyoizumi T; Fujisawa S
    Science; 2018 Jan; 359(6372):213-218. PubMed ID: 29326273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.