These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35016061)

  • 1. Chiral recognition of tryptophan enantiomers with UV-Vis spectrophotometry approach by using L-cysteine modified ZnFe
    Deng K; Chen S; Song H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120847. PubMed ID: 35016061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface.
    Deng Y; Zhang Z; Pang Y; Zhou X; Wang Y; Zhang Y; Yuan Y
    Anal Chim Acta; 2022 Sep; 1227():340331. PubMed ID: 36089298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange.
    Chen Q; Zhou J; Han Q; Wang Y; Fu Y
    Colloids Surf B Biointerfaces; 2012 Apr; 92():130-5. PubMed ID: 22169472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks.
    Zhang X; Wang F; Chen Z
    Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II).
    Qian J; Yi Y; Zhang D; Zhu G
    Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin.
    Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G
    Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-cysteine capped silver nanoparticles as chiral recognition sensor for ketoprofen enantiomers.
    Obaid A; Mohd Jamil AK; Saharin SM; Mohamad S
    Chirality; 2021 Nov; 33(11):810-823. PubMed ID: 34486177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers.
    Guo L; Zhang Q; Huang Y; Han Q; Wang Y; Fu Y
    Bioelectrochemistry; 2013 Dec; 94():87-93. PubMed ID: 24084594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a Chiral Fluorescent Probe for Tryptophan Enantiomers/Ascorbic Acid Identification.
    Li J; Du N; Guan R; Zhao S
    ACS Appl Mater Interfaces; 2023 May; 15(19):23642-23652. PubMed ID: 37134180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches.
    Jafari M; Tashkhourian J; Absalan G
    Talanta; 2018 Feb; 178():870-878. PubMed ID: 29136908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-assisted synthesis of chiral cysteine-capped CdSe quantum dots for fluorometric differentiation and quantitation of tryptophan enantiomers.
    Zare S; Tashkhourian J
    Mikrochim Acta; 2019 Dec; 187(1):71. PubMed ID: 31858256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.
    Chen Z; Zhang W; Wang L; Fan H; Wan Q; Wu X; Tang X; Tang JZ
    Chirality; 2015 Sep; 27(9):650-7. PubMed ID: 26179618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite.
    Niu X; Yang X; Li H; Shi Q; Wang K
    Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pivotal role of copper(II) in the enantiorecognition of tryptophan and histidine by gold nanoparticles.
    Contino A; Maccarrone G; Zimbone M; Musumeci P; Giuffrida A; Calcagno L
    Anal Bioanal Chem; 2014 Jan; 406(2):481-91. PubMed ID: 24232750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine tuning the pH triggers the enantiorecognition of underivatized amino acids by silver nanoparticles: a novel approach based on the focused use of solution equilibria.
    Contino A; Maccarrone G; Zimbone M; Musumeci P; Calcagno L; Pannitteri S
    J Colloid Interface Sci; 2015 Apr; 443():30-5. PubMed ID: 25528532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots.
    Jiang W; He R; Lv H; He X; Wang L; Wei Y
    ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles.
    Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P
    Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Smart Polymer-Brush-Modified Magnetic Graphene Oxide for Highly Efficient Chiral Recognition and Enantioseparation of Tryptophan Enantiomers.
    Yang XR; Song XD; Zhu HY; Cheng CJ; Yu HR; Zhang HH
    ACS Appl Bio Mater; 2018 Oct; 1(4):1074-1083. PubMed ID: 34996147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of tryptophan enantiomers by ligand-exchange chromatography with novel chiral ionic liquids ligand.
    Qing H; Jiang X; Yu J
    Chirality; 2014 Mar; 26(3):160-5. PubMed ID: 24497274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.