These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35016061)

  • 21. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides.
    Niu X; Yang X; Mo Z; Liu N; Guo R; Pan Z; Liu Z
    Mikrochim Acta; 2019 Jul; 186(8):557. PubMed ID: 31327066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of a ratiometric fluorescence nanoprobe for detecting tryptophan enantiomers.
    Heng H; Gu Q; Jin H; Shen P; Wei J; Er X; Sun J
    Talanta; 2024 Feb; 268(Pt 1):125291. PubMed ID: 37837951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers.
    Zou J; Yu JG
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition.
    Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z
    Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition.
    Fujihara A; Maeda N
    Anal Chim Acta; 2017 Aug; 979():31-35. PubMed ID: 28599706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers.
    Zhou H; Ran G; Masson JF; Wang C; Zhao Y; Song Q
    Anal Chem; 2018 Mar; 90(5):3374-3381. PubMed ID: 29461042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers.
    Pan QX; Yang YC; Zhao NN; Zhang B; Cui L; Zhang CY
    Anal Chim Acta; 2023 Sep; 1272():341480. PubMed ID: 37355327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A renewable electrochemical sensor based on a self-assembled framework of chiral molecules for efficient identification of tryptophan isomers.
    Gong T; Zhu S; Huang S; Gu P; Xiong Y; Zhang J; Jiang X
    Anal Chim Acta; 2022 Jan; 1191():339276. PubMed ID: 35033270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD.
    Hou Y; Liang J; Kuang X; Kuang R
    Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically engineered bacterium-modified magnetic particles assisted chiral recognition and colorimetric determination of D/L-tryptophan in millets.
    Li L; Luo Y; Jia L
    Food Chem; 2023 May; 407():135125. PubMed ID: 36495743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chirality of Copper-Amino Acid Nanoparticles Determines Chemodynamic Cancer Therapeutic Outcome.
    Wang S; Zhao Y; Yao S; Wang Z; Zhang Z; Wen K; Ma B; Li L
    Small; 2024 Jul; 20(28):e2309328. PubMed ID: 38308407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers.
    Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG
    Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chirality detection of amino acid enantiomers by organic electrochemical transistor.
    Zhang L; Wang G; Xiong C; Zheng L; He J; Ding Y; Lu H; Zhang G; Cho K; Qiu L
    Biosens Bioelectron; 2018 May; 105():121-128. PubMed ID: 29412935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined Use of Cu(II)-L-Histidine Complex and β-Cyclodextrin for the Enantioseparation of Three Amino Acids by CE and a Study of the Synergistic Effect.
    Xu Z; Guan J; Shao H; Fan S; Li X; Shi S; Yan F
    J Chromatogr Sci; 2020 Oct; 58(10):969-975. PubMed ID: 32869056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual chiral recognition of D/L-leucine using cube-shaped gold nanoparticles as colorimetric probes.
    Zhou X; Xu C; Jin Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117263. PubMed ID: 31247465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trace identification of cysteine enantiomers based on an electrochemical sensor assembled from Cu
    Wei P; Li Z; E Y; Jiang Y; Chen P; Li L; Krenzel TF; Qian K
    Biosens Bioelectron; 2023 Nov; 239():115631. PubMed ID: 37639886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.
    Liu Y; Tian A; Wang X; Qi J; Wang F; Ma Y; Ito Y; Wei Y
    J Chromatogr A; 2015 Jun; 1400():40-6. PubMed ID: 25976126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].
    Xiong L; Li R; Ji Y
    Se Pu; 2017 Jul; 35(7):712-718. PubMed ID: 29048834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element.
    Song J; Yang C; Ma J; Han Q; Ran P; Fu Y
    Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.