These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35016162)

  • 1. Trivalent ion overcharging on electrified graphene.
    Carr AJ; Lee SS; Uysal A
    J Phys Condens Matter; 2022 Jan; 34(14):. PubMed ID: 35016162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb
    Neumann J; Lee SS; Zhao EJ; Fenter P
    Chemphyschem; 2023 Nov; 24(22):e202300545. PubMed ID: 37632699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion correlations drive charge overscreening and heterogeneous nucleation at solid-aqueous electrolyte interfaces.
    Lee SS; Koishi A; Bourg IC; Fenter P
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets.
    Rezlerová E; Moučka F; Předota M; Lísal M
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monovalent ion adsorption at the muscovite (001)-solution interface: relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation.
    Lee SS; Fenter P; Nagy KL; Sturchio NC
    Langmuir; 2012 Jun; 28(23):8637-50. PubMed ID: 22574993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Y(III) Sorption at the Orthoclase (001) Surface Measured by X-ray Reflectivity.
    Neumann J; Lessing J; Lee SS; Stubbs JE; Eng PJ; Demnitz M; Fenter P; Schmidt M
    Environ Sci Technol; 2023 Jan; 57(1):266-276. PubMed ID: 36562683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrated cation speciation at the muscovite (001)-water interface.
    Lee SS; Fenter P; Park C; Sturchio NC; Nagy KL
    Langmuir; 2010 Nov; 26(22):16647-51. PubMed ID: 20932042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics, interfacial structure, and pH hysteresis of Rb+ and Sr2+ adsorption at the muscovite (001)-solution interface.
    Park C; Fenter PA; Sturchio NC; Nagy KL
    Langmuir; 2008 Dec; 24(24):13993-4004. PubMed ID: 19053665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate effect on charging of electrified graphene/water interfaces.
    Wang Y; Nagata Y; Bonn M
    Faraday Discuss; 2024 Feb; 249(0):303-316. PubMed ID: 37772472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the physics of both surface overcharging and charge reversal at heterophase interfaces.
    Wang ZY; Zhang P; Ma Z
    Phys Chem Chem Phys; 2018 Feb; 20(6):4118-4128. PubMed ID: 29355253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anions Enhance Rare Earth Adsorption at Negatively Charged Surfaces.
    Nayak S; Lovering K; Bu W; Uysal A
    J Phys Chem Lett; 2020 Jun; 11(11):4436-4442. PubMed ID: 32406689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite.
    Finney AR; McPherson IJ; Unwin PR; Salvalaglio M
    Chem Sci; 2021 Aug; 12(33):11166-11180. PubMed ID: 34522314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical investigation of adsorption of graphene oxide at an interface between two immiscible electrolyte solutions.
    Qiu H; Jiang T; Wang X; Zhu L; Wang Q; Zhao Y; Ge J; Chen Y
    RSC Adv; 2020 Jul; 10(43):25817-25827. PubMed ID: 35518605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) Ions from Solution onto the Muscovite Basal Plane.
    Hellebrandt S; Lee SS; Knope KE; Lussier AJ; Stubbs JE; Eng PJ; Soderholm L; Fenter P; Schmidt M
    Langmuir; 2016 Oct; 32(41):10473-10482. PubMed ID: 27678146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid.
    Ye J; Wu YC; Xu K; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    J Am Chem Soc; 2019 Oct; 141(42):16559-16563. PubMed ID: 31588740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the Electrical Double Layer of an Ionic Liquid on Graphene.
    Jurado LA; Espinosa-Marzal RM
    Sci Rep; 2017 Jun; 7(1):4225. PubMed ID: 28652593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.
    Zhang Z; Fenter P; Cheng L; Sturchio NC; Bedzyk MJ; Predota M; Bandura A; Kubicki JD; Lvov SN; Cummings PT; Chialvo AA; Ridley MK; Bénézeth P; Anovitz L; Palmer DA; Machesky ML; Wesolowski DJ
    Langmuir; 2004 Jun; 20(12):4954-69. PubMed ID: 15984256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray studies of interfacial strontium-extractant complexes in a model solvent extraction system.
    Bu W; Mihaylov M; Amoanu D; Lin B; Meron M; Kuzmenko I; Soderholm L; Schlossman ML
    J Phys Chem B; 2014 Oct; 118(43):12486-500. PubMed ID: 25264595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion and water adsorption to graphene and graphene oxide surfaces.
    Carr AJ; Lee SE; Uysal A
    Nanoscale; 2023 Sep; 15(35):14319-14337. PubMed ID: 37561081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface.
    Katakura S; Amano KI; Sakka T; Bu W; Lin B; Schlossman ML; Nishi N
    J Phys Chem B; 2020 Jul; 124(29):6412-6419. PubMed ID: 32600035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.