These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35016338)

  • 1. Fabricating Bionic Ultraslippery Surface on Titanium Alloys with Excellent Fouling-Resistant Performance.
    Wang Y; Zhao W; Wu W; Wang C; Wu X; Xue Q
    ACS Appl Bio Mater; 2019 Jan; 2(1):155-162. PubMed ID: 35016338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design novel three-dimensional network nanostructure for lubricant infused on titanium alloys towards long-term anti-fouling.
    Xie M; Wang Y; Zhao W
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111375. PubMed ID: 33011501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review.
    Dias Corpa Tardelli J; Bolfarini C; Cândido Dos Reis A
    J Trace Elem Med Biol; 2020 Dec; 62():126618. PubMed ID: 32663743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durable lubricant-infused coating on a magnesium alloy substrate with anti-biofouling and anti-corrosion properties and excellent thermally assisted healing ability.
    Li H; Feng X; Peng Y; Zeng R
    Nanoscale; 2020 Apr; 12(14):7700-7711. PubMed ID: 32211633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Slippery Lubricant-Infused Porous Surface for Inhibition of Microbially Influenced Corrosion.
    Wang P; Zhang D; Lu Z; Sun S
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1120-7. PubMed ID: 26619002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing a MOF-based slippery lubricant-infused porous surface with dual functional anti-fouling strategy.
    Li H; Yan M; Zhao W
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1424-1435. PubMed ID: 34583045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green biolubricant infused slippery surfaces to combat marine biofouling.
    Basu S; Hanh BM; Isaiah Chua JQ; Daniel D; Ismail MH; Marchioro M; Amini S; Rice SA; Miserez A
    J Colloid Interface Sci; 2020 May; 568():185-197. PubMed ID: 32088449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WO
    Wang C; Yan Y; Du D; Xiong X; Ma Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29767-29777. PubMed ID: 32510196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling.
    Wang P; Zhang D; Sun S; Li T; Sun Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):972-982. PubMed ID: 27992173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid.
    Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK
    Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion.
    Yan W; Xue S; Bin Xiang ; Zhao X; Zhang W; Mu P; Li J
    Chem Commun (Camb); 2023 Feb; 59(16):2182-2198. PubMed ID: 36723187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjoint corrosion and wear in titanium alloys.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(8):765-72. PubMed ID: 10353659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application.
    Wang P; Zhang D; Lu Z
    Colloids Surf B Biointerfaces; 2015 Dec; 136():240-7. PubMed ID: 26402422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slippery Porous-Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes.
    Tong Z; Gao F; Chen S; Song L; Hu J; Hou Y; Lu J; Leung MKH; Zhan X; Zhang Q
    Adv Mater; 2024 Mar; 36(9):e2308972. PubMed ID: 37917884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1999 Apr; 20(7):631-7. PubMed ID: 10208405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.
    Campanelli LC; Bortolan CC; da Silva PSCP; Bolfarini C; Oliveira NTC
    J Mech Behav Biomed Mater; 2017 Jan; 65():542-551. PubMed ID: 27697716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifouling Slippery Surface against Marine Biofouling.
    Liu X; Gu X; Zhou Y; Pan W; Liu J; Song J
    Langmuir; 2023 Sep; 39(38):13441-13448. PubMed ID: 37657482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.
    Zhang J; Gu C; Tu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11247-11257. PubMed ID: 28277644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting Corrosion of Biomedical-Grade Ti-6Al-4V Alloys with Graphene Nanocoating.
    Malhotra R; Han YM; Morin JLP; Luong-Van EK; Chew RJJ; Castro Neto AH; Nijhuis CA; Rosa V
    J Dent Res; 2020 Mar; 99(3):285-292. PubMed ID: 31905311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical corrosion, wear and cell behavior of ZrO
    Li J; He X; Zhang G; Hang R; Huang X; Tang B; Zhang X
    Bioelectrochemistry; 2018 Jun; 121():105-114. PubMed ID: 29413860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.