These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35016374)

  • 1. High-Yield Method To Fabricate and Functionalize DNA Nanoparticles from the Products of Rolling Circle Amplification.
    Yuan X; Xiao F; Zhao H; Huang Y; Shao C; Weizmann Y; Tian L
    ACS Appl Bio Mater; 2018 Aug; 1(2):511-519. PubMed ID: 35016374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications.
    Li C; Wang Y; Li PF; Fu Q
    Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Biomedical Applications of "Polymer-Like" Nucleic Acids Enzymatically Produced by Rolling Circle Amplification.
    Li J; Lin L; Yu J; Zhai S; Liu G; Tian L
    ACS Appl Bio Mater; 2019 Oct; 2(10):4106-4120. PubMed ID: 35021425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.
    Xu Y; Lv Z; Yao C; Yang D
    Biomater Sci; 2022 Jun; 10(12):3054-3061. PubMed ID: 35535967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium-Stabilized Multifunctional DNA Nanoparticles for Tumor-Targeted and pH-Responsive Drug Delivery.
    Zhao H; Yuan X; Yu J; Huang Y; Shao C; Xiao F; Lin L; Li Y; Tian L
    ACS Appl Mater Interfaces; 2018 May; 10(18):15418-15427. PubMed ID: 29676144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs.
    Tian W; Li P; He W; Liu C; Li Z
    Biosens Bioelectron; 2019 Mar; 128():17-22. PubMed ID: 30616213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and stretching of rolling circle amplification products in a flow-through system.
    Reiss E; Hölzel R; Bier FF
    Small; 2009 Oct; 5(20):2316-22. PubMed ID: 19492351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays.
    Minero GAS; Cangiano V; Garbarino F; Fock J; Hansen MF
    Mikrochim Acta; 2019 Jul; 186(8):528. PubMed ID: 31297615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.
    Ali MM; Li F; Zhang Z; Zhang K; Kang DK; Ankrum JA; Le XC; Zhao W
    Chem Soc Rev; 2014 May; 43(10):3324-41. PubMed ID: 24643375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Application of Rolling Circle Amplification for a Tumor-Specific Drug Carrier.
    Kim JH; Jang M; Kim YJ; Ahn HJ
    J Med Chem; 2015 Oct; 58(19):7863-73. PubMed ID: 26361253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rolling circle amplification as isothermal gene amplification in molecular diagnostics.
    Goo NI; Kim DE
    Biochip J; 2016; 10(4):262-271. PubMed ID: 32226587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rolling Circle Amplification on a Bead: Improving the Detection Time for a Magnetic Bioassay.
    Sánchez Martín D; Oropesa-Nuñez R; Zardán Gómez de la Torre T
    ACS Omega; 2023 Jan; 8(4):4391-4397. PubMed ID: 36743032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optomagnetic Detection of Rolling Circle Amplification Products.
    Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF
    Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.
    Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS
    Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling circle amplification with fluorescently labeled dUTP-balancing the yield and degree of labeling.
    Goryunova MS; Arzhanik VK; Zavriev SK; Ryazantsev DY
    Anal Bioanal Chem; 2021 Jun; 413(14):3737-3748. PubMed ID: 33834268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z; Zhang H; Wang F; Zhang G; Zhou T; Wang X; Liu S; Liu T
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800263. PubMed ID: 29952041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasingly branched rolling circle amplification for the cancer gene detection.
    Li H; Xu J; Wang Z; Wu ZS; Jia L
    Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification.
    Lee SY; Kim KR; Bang D; Bae SW; Kim HJ; Ahn DR
    Biomater Sci; 2016 Aug; 4(9):1314-7. PubMed ID: 27464359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.