These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35016374)

  • 21. RNase H-dependent amplification improves the accuracy of rolling circle amplification combined with loop-mediated isothermal amplification (RCA-LAMP).
    Hasegawa T; Hapsari D; Iwahashi H
    PeerJ; 2021; 9():e11851. PubMed ID: 34395086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification.
    Long Y; Zhou X; Xing D
    Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification.
    Yao Q; Wang Y; Wang J; Chen S; Liu H; Jiang Z; Zhang X; Liu S; Yuan Q; Zhou X
    ACS Nano; 2018 Jul; 12(7):6777-6783. PubMed ID: 29924598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification.
    Bi S; Li L; Zhang S
    Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiresponsive rolling circle amplification for DNA logic gates mediated by endonuclease.
    Xu W; Deng R; Wang L; Li J
    Anal Chem; 2014 Aug; 86(15):7813-8. PubMed ID: 25014610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid and sensitive detection of Karlodinium veneficum by a novel double-nick rolling circle amplification.
    Liu F; Zhang C; Zheng H; Yang Y; Zang D; Wang Y; Chen G
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42570-42582. PubMed ID: 33813702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rolling Circle Amplification with Chemically Modified Nucleoside Triphosphates.
    Hollenstein M; Damha MJ
    Curr Protoc Nucleic Acid Chem; 2016 Dec; 67():7.26.1-7.26.15. PubMed ID: 27911492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping.
    Soares RRG; Madaboosi N; Nilsson M
    Acc Chem Res; 2021 Nov; 54(21):3979-3990. PubMed ID: 34637281
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Francés-Soriano L; Leino M; Dos Santos MC; Kovacs D; Borbas KE; Söderberg O; Hildebrandt N
    Anal Chem; 2021 Jan; 93(3):1842-1850. PubMed ID: 33356162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification.
    Baker YR; Yuan L; Chen J; Belle R; Carlisle R; El-Sagheer AH; Brown T
    Nucleic Acids Res; 2021 Sep; 49(16):9042-9052. PubMed ID: 34403467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein detection based on rolling circle amplification sensors.
    Shi H; Cui J; Sulemana H; Wang W; Gao L
    Luminescence; 2021 Jun; 36(4):842-848. PubMed ID: 33502072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification.
    Hong C; Zhang X; Ye S; Yang H; Huang Z; Yang D; Cai R; Tan W
    ACS Appl Mater Interfaces; 2021 May; 13(17):19695-19700. PubMed ID: 33881296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection.
    Jiang HX; Liang ZZ; Ma YH; Kong DM; Hong ZY
    Anal Chim Acta; 2016 Nov; 943():114-122. PubMed ID: 27769370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-stranded DNA aptamer-based rolling circle amplification as anti-chicken
    Hameed SS; Al-Ogaili AS; Noori N
    Vet World; 2022 May; 15(5):1171-1176. PubMed ID: 35765498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification.
    Li F; Liu X; Zhao B; Yan J; Li Q; Aldalbahi A; Shi J; Song S; Fan C; Wang L
    ACS Appl Mater Interfaces; 2017 May; 9(18):15245-15253. PubMed ID: 28414417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding possibilities of rolling circle amplification as a biosensing platform.
    Kobori T; Takahashi H
    Anal Sci; 2014; 30(1):59-64. PubMed ID: 24420245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-nylon membrane detection of nucleic acid molecules by rolling circle amplification.
    Xu X; Zhang B; Gan P; Wu J; Dai W; Zhang L; Wang J
    Anal Biochem; 2017 Sep; 533():26-33. PubMed ID: 28610874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing.
    Gu L; Yan W; Liu L; Wang S; Zhang X; Lyu M
    Pharmaceuticals (Basel); 2018 Apr; 11(2):. PubMed ID: 29690513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.