These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3501688)

  • 1. Ionic mechanism of generation of receptor potential in frog taste cells.
    Sato T; Okada Y; Miyamoto T
    Ann N Y Acad Sci; 1987; 510():23-6. PubMed ID: 3501688
    [No Abstract]   [Full Text] [Related]  

  • 2. Ionic basis of salt-induced receptor potential in frog taste cells.
    Miyamoto T; Okada Y; Sato T
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):591-5. PubMed ID: 2575944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of proton transporter to acid-induced receptor potential in frog taste cells.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Aug; 105(4):725-8. PubMed ID: 7689435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic basis of receptor potential in frog taste cell in response to salt stimuli.
    Sato T; Sugimoto K; Okada Y
    Jpn J Physiol; 1982; 32(3):459-62. PubMed ID: 6982363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):247-50. PubMed ID: 2864165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of receptor potential of frog taste cells induced by acid stimuli.
    Miyamoto T; Okada Y; Sato T
    J Physiol; 1988 Nov; 405():699-711. PubMed ID: 3267156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Mar; 29(2):243-52. PubMed ID: 18972206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic mechanism of generation of receptor potential in response to quinine in frog taste cell.
    Okada Y; Miyamoto T; Sato T
    Brain Res; 1988 May; 450(1-2):295-302. PubMed ID: 3261192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-depolarization and off-hyperpolarization after termination of quinine-HCl stimulation in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1996 Feb; 13(1):63-7. PubMed ID: 8688812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.
    Sato T; Nishishita K; Mineda T; Okada Y; Toda K
    Chem Senses; 2007 Jan; 32(1):3-10. PubMed ID: 16956970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage clamping of a frog (Rana catesbeiana) taste cell with a single microelectrode.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Sep; 106(1):37-41. PubMed ID: 8104758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and physiological properties of the taste organs on the ventral side of frog tongue (Rana catesbeiana).
    Honda E; Toyoshima K; Hirakawa T; Nakamura S; Nakahara S
    Chem Senses; 1994 Jun; 19(3):231-8. PubMed ID: 8055273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taste responses to electrolytes in the frog glossopharyngeal nerve: initial process of taste reception.
    Kitada Y
    Brain Res; 1990 Dec; 535(2):305-12. PubMed ID: 2073608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extracellular Ca2+ on the quinine-activated current of bullfrog taste receptor cells.
    Tsunenari T; Kaneko A
    J Physiol; 2001 Jan; 530(Pt 2):235-41. PubMed ID: 11208971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye-coupling among frog (Rana catesbeiana) taste disk cells.
    Sata O; Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1992 Sep; 103(1):99-103. PubMed ID: 1356703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Norepinephrine as a possible transmitter involved in synaptic transmission in frog taste organs and Ca dependence of its release.
    Nagahama S; Kurihara K
    J Gen Physiol; 1985 Mar; 85(3):431-42. PubMed ID: 2985736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis.
    Hanamori T; Hirota K; Ishiko N
    J Gen Physiol; 1990 Jun; 95(6):1159-82. PubMed ID: 2374001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between receptor potential and resistance change in the frog taste cells.
    Sato T; Beidler LM
    Brain Res; 1973 Apr; 53(2):455-7. PubMed ID: 4540968
    [No Abstract]   [Full Text] [Related]  

  • 20. Latency of gustatory neural impulses initiated in frog tongue.
    Sato T; Miyamoto T; Okada Y
    Brain Res; 1987 Oct; 424(2):333-42. PubMed ID: 3499962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.