These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35017026)
1. NMDA mediates disruption of blood-brain barrier permeability via Rho/ROCK signaling pathway. Yu Y; Wu Y; Wei J; Huang F; Mao F; Nong W; Cao X; Huang W Neurochem Int; 2022 Mar; 154():105278. PubMed ID: 35017026 [TBL] [Abstract][Full Text] [Related]
2. Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. Mehra A; Guérit S; Macrez R; Gosselet F; Sevin E; Lebas H; Maubert E; De Vries HE; Bardou I; Vivien D; Docagne F J Neurosci; 2020 Feb; 40(8):1778-1787. PubMed ID: 31953371 [TBL] [Abstract][Full Text] [Related]
3. N-methyl-D-aspartic acid increases tight junction protein destruction in brain endothelial cell via caveolin-1-associated ERK1/2 signaling. Mao F; Huang F; Nong W; Lao D; Gong Z; Huang W Toxicology; 2022 Mar; 470():153139. PubMed ID: 35257817 [TBL] [Abstract][Full Text] [Related]
4. Inhibiting Caveolin-1-Related Akt/mTOR Signaling Pathway Protects Against N-methyl-D-Aspartate Receptor Activation-Mediated Dysfunction of Blood-Brain Barrier in vitro. Huang F; Mao F; Nong W; Gong Z; Lao D; Huang W Mol Neurobiol; 2024 Jul; 61(7):4166-4177. PubMed ID: 38066401 [TBL] [Abstract][Full Text] [Related]
5. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Xue Y; He JT; Zhang KK; Chen LJ; Wang Q; Xie XL Biochem Biophys Res Commun; 2019 Feb; 509(2):395-401. PubMed ID: 30594393 [TBL] [Abstract][Full Text] [Related]
6. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Feng S; Zou L; Wang H; He R; Liu K; Zhu H Molecules; 2018 Sep; 23(9):. PubMed ID: 30227623 [TBL] [Abstract][Full Text] [Related]
7. Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability Via VE-Cadherin Internalization: Roles of RhoA/ROCK2. Chen J; Sun L; Ding GB; Chen L; Jiang L; Wang J; Wu J J Mol Neurosci; 2019 Sep; 69(1):49-59. PubMed ID: 31187440 [TBL] [Abstract][Full Text] [Related]
8. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Yang G; Qian C; Wang N; Lin C; Wang Y; Wang G; Piao X Cell Mol Neurobiol; 2017 May; 37(4):619-633. PubMed ID: 27380043 [TBL] [Abstract][Full Text] [Related]
9. Roles of NMDARs in maintenance of the mouse cerebrovascular endothelial cell-constructed tight junction barrier. Chen JT; Chen TG; Chang YC; Chen CY; Chen RM Toxicology; 2016 Jan; 339():40-50. PubMed ID: 26655082 [TBL] [Abstract][Full Text] [Related]
10. Evidence for involvement of ROCK signaling in bradykinin-induced increase in murine blood-tumor barrier permeability. Ma T; Liu L; Wang P; Xue Y J Neurooncol; 2012 Jan; 106(2):291-301. PubMed ID: 21892742 [TBL] [Abstract][Full Text] [Related]
11. Oligomeric Tau-induced oxidative damage and functional alterations in cerebral endothelial cells: Role of RhoA/ROCK signaling pathway. Hossen F; Sun GY; Lee JC Free Radic Biol Med; 2024 Aug; 221():261-272. PubMed ID: 38815773 [TBL] [Abstract][Full Text] [Related]
12. Oxycodone relieves permeability damage and apoptosis of oxygen-glucose deprivation/reoxygenation-induced brain microvascular endothelial cells through ras homolog family member A (RhoA)/ Rho-associated coiled-coil containing kinases (ROCK)/ myosin light chain 2 (MLC2) signal. Shao F; Han D; Shen Y; Bian W; Zou L; Hu Y; Sun W Bioengineered; 2022 Mar; 13(3):5205-5215. PubMed ID: 35170371 [TBL] [Abstract][Full Text] [Related]
13. Effects of NMDA receptor modulators on a blood-brain barrier in vitro model. Neuhaus W; Freidl M; Szkokan P; Berger M; Wirth M; Winkler J; Gabor F; Pifl C; Noe CR Brain Res; 2011 Jun; 1394():49-61. PubMed ID: 21549356 [TBL] [Abstract][Full Text] [Related]
14. Microparticles generated during chronic cerebral ischemia increase the permeability of microvascular endothelial barriers in vitro. Edrissi H; Schock SC; Hakim AM; Thompson CS Brain Res; 2016 Mar; 1634():83-93. PubMed ID: 26723565 [TBL] [Abstract][Full Text] [Related]
15. Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin. Niego B; Lee N; Larsson P; De Silva TM; Au AE; McCutcheon F; Medcalf RL PLoS One; 2017; 12(5):e0177332. PubMed ID: 28510599 [TBL] [Abstract][Full Text] [Related]
16. Rho-kinase inhibitor hydroxyfasudil protects against HIV-1 Tat-induced dysfunction of tight junction and neprilysin/Aβ transfer receptor expression in mouse brain microvessels. Chen Q; Wu Y; Yu Y; Wei J; Huang W Mol Cell Biochem; 2021 May; 476(5):2159-2170. PubMed ID: 33548010 [TBL] [Abstract][Full Text] [Related]
17. High expression of EphA2 led to secondary injury by destruction of BBB integrity though the ROCK pathway after diffuse axonal injury. Zhao Y; Li W; Song J; Zhang M; Huang T; Wei X Neurosci Lett; 2020 Sep; 736():135234. PubMed ID: 32721428 [TBL] [Abstract][Full Text] [Related]
18. Increased activity of Rho kinase contributes to hemoglobin-induced early disruption of the blood-brain barrier in vivo after the occurrence of intracerebral hemorrhage. Fu Z; Chen Y; Qin F; Yang S; Deng X; Ding R; Feng L; Li W; Zhu J Int J Clin Exp Pathol; 2014; 7(11):7844-53. PubMed ID: 25550824 [TBL] [Abstract][Full Text] [Related]
19. PKC-β exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway. Srivastava K; Shao B; Bayraktutan U J Cereb Blood Flow Metab; 2013 Dec; 33(12):1928-36. PubMed ID: 23963366 [TBL] [Abstract][Full Text] [Related]
20. Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood-tumor barrier: role of RhoA/ROCK signaling in EMAP II opening of the BTB. Xie H; Xue YX; Liu LB; Liu YH; Wang P J Mol Neurosci; 2012 Mar; 46(3):666-76. PubMed ID: 21647708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]