BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 35017054)

  • 21. Primary stability of anterior lumbar stabilization: interdependence of implant type and endplate retention or removal.
    Flamme CH; von der Heide N; Heymann C; Hurschler C
    Eur Spine J; 2006 Jun; 15(6):807-18. PubMed ID: 16091966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-printed titanium cages without bone graft outperform PEEK cages with autograft in an animal model.
    Laratta JL; Vivace BJ; López-Peña M; Guzón FM; Gonzalez-Cantalpeidra A; Jorge-Mora A; Villar-Liste RM; Pino-Lopez L; Lukyanchuk A; Taghizadeh EA; Pino-Minguez J
    Spine J; 2022 Jun; 22(6):1016-1027. PubMed ID: 34906741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion].
    Kandziora F; Pflugmacher R; Scholz M; Schäfer J; Schollmeier G; Schnake KJ; Bail H; Duda G; Haas NP
    Chirurg; 2002 Sep; 73(9):909-17. PubMed ID: 12297957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical evaluation of autologous bone-cage in posterior lumbar interbody fusion: a finite element analysis.
    Zhu H; Zhong W; Zhang P; Liu X; Huang J; Liu F; Li J
    BMC Musculoskelet Disord; 2020 Jun; 21(1):379. PubMed ID: 32534573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study.
    Liu X; Ma J; Park P; Huang X; Xie N; Ye X
    BMC Musculoskelet Disord; 2017 Feb; 18(1):63. PubMed ID: 28153036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model.
    Chunguang Z; Yueming S; Chongqi T; Hong D; Fuxing P; Yonggang Y; Hong L
    Spine (Phila Pa 1976); 2011 Dec; 36(25):E1615-22. PubMed ID: 21270683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A preclinical large animal study on a novel intervertebral fusion cage covered with high porosity titanium sheets with a triple pore structure used for spinal fusion.
    Yamada K; Ito M; Akazawa T; Murata M; Yamamoto T; Iwasaki N
    Eur Spine J; 2015 Nov; 24(11):2530-7. PubMed ID: 26026473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does Spanning a Lateral Lumbar Interbody Cage Across the Vertebral Ring Apophysis Increase Loads Required for Failure and Mitigate Endplate Violation.
    Briski DC; Goel VK; Waddell BS; Serhan H; Kodigudla MK; Palepu V; Agarwal AK; Zavatsky JM
    Spine (Phila Pa 1976); 2017 Oct; 42(20):E1158-E1164. PubMed ID: 28472018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses.
    McGilvray KC; Waldorff EI; Easley J; Seim HB; Zhang N; Linovitz RJ; Ryaby JT; Puttlitz CM
    Spine J; 2017 Dec; 17(12):1907-1916. PubMed ID: 28751242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A two-cage reconstruction versus a single mega-cage reconstruction for lumbar interbody fusion: an experimental comparison.
    Murakami H; Horton WC; Tomita K; Hutton WC
    Eur Spine J; 2004 Aug; 13(5):432-40. PubMed ID: 15048561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graft subsidence and reoperation after lateral lumbar interbody fusion: a propensity score-matched and cost analysis of polyetheretherketone versus 3D-printed porous titanium interbodies.
    Alan N; Deng H; Muthiah N; Vodovotz L; Dembinski R; Guha D; Agarwal N; Ozpinar A; Hamilton DK; Kanter AS; Okonkwo DO
    J Neurosurg Spine; 2023 Aug; 39(2):187-195. PubMed ID: 37178027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does nanoscale porous titanium coating increase lumbar spinal stiffness of an interbody fusion cage? An in vivo biomechanical analysis in an ovine model.
    Gunzburg R; Colloca CJ; Jones CF; Hall DJ; McAviney J; Callary S; Hegazy MA; Szpalski M; Freeman BJC
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():187-196. PubMed ID: 31176064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biportal endoscopic extraforaminal lumbar interbody fusion using a 3D-printed porous titanium cage with large footprints: technical note and preliminary results.
    You KH; Hwang JY; Hong SH; Kang MS; Park SM; Park HJ
    Acta Neurochir (Wien); 2023 Jun; 165(6):1435-1443. PubMed ID: 37115323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical comparison of bioabsorbable cervical spine interbody fusion cages.
    Pflugmacher R; Schleicher P; Gumnior S; Turan O; Scholz M; Eindorf T; Haas NP; Kandziora F
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1717-22. PubMed ID: 15303013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Titanium Cages for Minimally Invasive Lateral Lumbar Interbody Fusion: First Assessment of Subsidence.
    Krafft PR; Osburn B; Vivas AC; Rao G; Alikhani P
    Spine Surg Relat Res; 2020; 4(2):171-177. PubMed ID: 32405565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interbody device endplate engagement effects on motion segment biomechanics.
    Buttermann GR; Beaubien BP; Freeman AL; Stoll JE; Chappuis JL
    Spine J; 2009 Jul; 9(7):564-73. PubMed ID: 19457722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel 3D printed cage with microporous structure and in vivo fusion function.
    Li P; Jiang W; Yan J; Hu K; Han Z; Wang B; Zhao Y; Cui G; Wang Z; Mao K; Wang Y; Cui F
    J Biomed Mater Res A; 2019 Jul; 107(7):1386-1392. PubMed ID: 30724479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical performance of lumbar intervertebral body fusion devices: An analysis of data submitted to the Food and Drug Administration.
    Peck JH; Kavlock KD; Showalter BL; Ferrell BM; Peck DG; Dmitriev AE
    J Biomech; 2018 Sep; 78():87-93. PubMed ID: 30060922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone morphogenetic protein-2 application by a poly(D,L-lactide)-coated interbody cage: in vivo results of a new carrier for growth factors.
    Kandziora F; Bail H; Schmidmaier G; Schollmeier G; Scholz M; Knispel C; Hiller T; Pflugmacher R; Mittlmeier T; Raschke M; Haas NP
    J Neurosurg; 2002 Jul; 97(1 Suppl):40-8. PubMed ID: 12120650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.