These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 35017054)

  • 41. Porous fusion cage design via integrated global-local topology optimization and biomechanical analysis of performance.
    Wang H; Wan Y; Li Q; Xia Y; Liu X; Liu Z; Li X
    J Mech Behav Biomed Mater; 2020 Dec; 112():103982. PubMed ID: 32829165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study.
    Vadapalli S; Sairyo K; Goel VK; Robon M; Biyani A; Khandha A; Ebraheim NA
    Spine (Phila Pa 1976); 2006 Dec; 31(26):E992-8. PubMed ID: 17172990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement].
    Matejka J; Zeman J; Belatka J
    Acta Chir Orthop Traumatol Cech; 2009 Oct; 76(5):388-93. PubMed ID: 19912702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.
    Wu SH; Li Y; Zhang YQ; Li XK; Yuan CF; Hao YL; Zhang ZY; Guo Z
    Artif Organs; 2013 Dec; 37(12):E191-201. PubMed ID: 24147953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage.
    Adl Amini D; Okano I; Oezel L; Zhu J; Chiapparelli E; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Eur Spine J; 2021 Aug; 30(8):2377-2384. PubMed ID: 34215921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages.
    van Dijk M; Smit TH; Sugihara S; Burger EH; Wuisman PI
    Spine (Phila Pa 1976); 2002 Apr; 27(7):682-8. PubMed ID: 11923659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of cage design on interbody fusion in a sheep cervical spine model.
    Kandziora F; Schollmeier G; Scholz M; Schaefer J; Scholz A; Schmidmaier G; Schröder R; Bail H; Duda G; Mittlmeier T; Haas NP
    J Neurosurg; 2002 Apr; 96(3 Suppl):321-32. PubMed ID: 11990842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational comparison of three different cage porosities in posterior lumbar interbody fusion with porous cage.
    Chen YN; Chang CW
    Comput Biol Med; 2021 Dec; 139():105036. PubMed ID: 34798396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence.
    Moussa A; Tanzer M; Pasini D
    J Mech Behav Biomed Mater; 2018 Sep; 85():134-151. PubMed ID: 29890380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Static and Fatigue Load Bearing Investigation on Porous Structure Titanium Additively Manufactured Anterior Cervical Cages.
    Kumar M; Meena VK; Singh S
    Biomed Res Int; 2022; 2022():6534749. PubMed ID: 35355825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis.
    Schiffman M; Brau SA; Henderson R; Gimmestad G
    Spine J; 2003; 3(5):377-87. PubMed ID: 14588950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preclinical Evaluation of a Novel 3D-Printed Movable Lumbar Vertebral Complex for Replacement: In Vivo and Biomechanical Evaluation of Goat Model.
    Zhang F; Liu J; He X; Wang R; Lu T; Zhang T; Liu Z
    Biomed Res Int; 2021; 2021():2343404. PubMed ID: 34926682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine.
    Kandziora F; Schmidmaier G; Schollmeier G; Bail H; Pflugmacher R; Görke T; Wagner M; Raschke M; Mittlmeier T; Haas NP
    Spine (Phila Pa 1976); 2002 Aug; 27(16):1710-23. PubMed ID: 12195060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interbody fusion cage design using integrated global layout and local microstructure topology optimization.
    Lin CY; Hsiao CC; Chen PQ; Hollister SJ
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1747-54. PubMed ID: 15303018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Subsidence after lateral lumbar interbody fusion using a 3D-printed porous titanium interbody cage: single-institution case series.
    Alan N; Vodovotz L; Muthiah N; Deng H; Guha D; Agarwal N; Ozpinar A; Mushlin HM; Puccio L; Hamilton DK; Okonkwo DO; Kanter AS
    J Neurosurg Spine; 2022 Nov; 37(5):663-669. PubMed ID: 35594892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomechanical analysis of biodegradable interbody fusion cages augmented With poly(propylene glycol-co-fumaric acid).
    Kandziora F; Pflugmacher R; Kleemann R; Duda G; Wise DL; Trantolo DJ; Lewandrowski KU
    Spine (Phila Pa 1976); 2002 Aug; 27(15):1644-51. PubMed ID: 12163726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous interbody fusion cage design via topology optimization and biomechanical performance analysis.
    Li N; Zhang Y; Tang Q; Wang H; He D; Yao Y; Fan Y
    Comput Methods Biomech Biomed Engin; 2023 May; 26(6):650-659. PubMed ID: 35652627
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The anterior and traverse cage can provide optimal biomechanical performance for both traditional and percutaneous endoscopic transforaminal lumbar interbody fusion.
    He L; Xiang Q; Yang Y; Tsai TY; Yu Y; Cheng L
    Comput Biol Med; 2021 Apr; 131():104291. PubMed ID: 33676337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of the geometric and material properties of lumbar endplate on lumbar interbody fusion failure: a systematic review.
    Yu Y; Robinson DL; Ackland DC; Yang Y; Lee PVS
    J Orthop Surg Res; 2022 Apr; 17(1):224. PubMed ID: 35399075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model.
    Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS
    Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.