These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 35017408)

  • 21. Intraspinal stem cell transplantation for amyotrophic lateral sclerosis.
    Chen KS; Sakowski SA; Feldman EL
    Ann Neurol; 2016 Mar; 79(3):342-53. PubMed ID: 26696091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Introduction for Stem Cell-Based Therapy for Neurodegenerative Diseases.
    Han F; Lu P
    Adv Exp Med Biol; 2020; 1266():1-8. PubMed ID: 33105491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of motor neurons from pluripotent stem cells.
    Chipman PH; Toma JS; Rafuse VF
    Prog Brain Res; 2012; 201():313-31. PubMed ID: 23186721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of Pericytes in Amyotrophic Lateral Sclerosis.
    Coatti GC; Cavaçana N; Zatz M
    Adv Exp Med Biol; 2019; 1147():137-146. PubMed ID: 31147876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling Axonal Degeneration Using Motor Nerve Organoids.
    Chow SYA; Nakanishi Y; Kaneda S; Ikeuchi Y
    Methods Mol Biol; 2022; 2515():89-97. PubMed ID: 35776347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex.
    Thomsen GM; Gowing G; Latter J; Chen M; Vit JP; Staggenborg K; Avalos P; Alkaslasi M; Ferraiuolo L; Likhite S; Kaspar BK; Svendsen CN
    J Neurosci; 2014 Nov; 34(47):15587-600. PubMed ID: 25411487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis.
    Iwata NK; Kwan JY; Danielian LE; Butman JA; Tovar-Moll F; Bayat E; Floeter MK
    Brain; 2011 Sep; 134(Pt 9):2642-55. PubMed ID: 21798965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis.
    Popescu IR; Nicaise C; Liu S; Bisch G; Knippenberg S; Daubie V; Bohl D; Pochet R
    Stem Cells Transl Med; 2013 Mar; 2(3):167-74. PubMed ID: 23413376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stem cells in amyotrophic lateral sclerosis: state of the art.
    Mazzini L; Vercelli A; Ferrero I; Mareschi K; Boido M; Servo S; Oggioni GD; Testa L; Monaco F; Fagioli F
    Expert Opin Biol Ther; 2009 Oct; 9(10):1245-58. PubMed ID: 19663719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation.
    Hefferan MP; Galik J; Kakinohana O; Sekerkova G; Santucci C; Marsala S; Navarro R; Hruska-Plochan M; Johe K; Feldman E; Cleveland DW; Marsala M
    PLoS One; 2012; 7(8):e42614. PubMed ID: 22916141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical activity and neuroprotection in amyotrophic lateral sclerosis.
    McCrate ME; Kaspar BK
    Neuromolecular Med; 2008; 10(2):108-17. PubMed ID: 18286388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells.
    López-González R; Kunckles P; Velasco I
    Cell Transplant; 2009; 18(10):1171-81. PubMed ID: 19660174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spinal motor neuron transplantation to enhance nerve reconstruction strategies: Towards a cell therapy.
    Bazarek S; Johnston BR; Sten M; Mandeville R; Eggan K; Wainger BJ; Brown JM
    Exp Neurol; 2022 Jul; 353():114054. PubMed ID: 35341748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cervical spinal cord and motor unit pathology in a canine model of SOD1-associated amyotrophic lateral sclerosis.
    Katz ML; Jensen CA; Student JT; Johnson GC; Coates JR
    J Neurol Sci; 2017 Jul; 378():193-203. PubMed ID: 28566164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS).
    Van Dyke JM; Smit-Oistad IM; Macrander C; Krakora D; Meyer MG; Suzuki M
    Exp Neurol; 2016 Mar; 277():275-282. PubMed ID: 26775178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The past, present and future of stem cell clinical trials for ALS.
    Thomsen GM; Gowing G; Svendsen S; Svendsen CN
    Exp Neurol; 2014 Dec; 262 Pt B():127-37. PubMed ID: 24613827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stem cells in amyotrophic lateral sclerosis: motor neuron protection or replacement?
    Silani V; Calzarossa C; Cova L; Ticozzi N
    CNS Neurol Disord Drug Targets; 2010 Jul; 9(3):314-24. PubMed ID: 20406179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel protocol to derive cervical motor neurons from induced pluripotent stem cells for amyotrophic lateral sclerosis.
    Yang M; Liu M; Sánchez YF; Avazzadeh S; Quinlan LR; Liu G; Lu Y; Yang G; O'Brien T; Henshall DC; Hardiman O; Shen S
    Stem Cell Reports; 2023 Sep; 18(9):1870-1883. PubMed ID: 37595581
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.