These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35017488)

  • 1. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
    Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE
    Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function analysis of a type III preQ
    Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE
    J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of preQ
    Warnasooriya C; Ling C; Belashov IA; Salim M; Wedekind JE; Ermolenko DN
    RNA Biol; 2019 Sep; 16(9):1086-1092. PubMed ID: 30328747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase.
    Klein DJ; Edwards TE; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2009 Mar; 16(3):343-4. PubMed ID: 19234468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of a transcriptionally acting preQ1 riboswitch.
    Rieder U; Kreutz C; Micura R
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10804-9. PubMed ID: 20534493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemical probe based on the PreQ
    Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS
    Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ITC analysis of ligand binding to preQ₁ riboswitches.
    Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE
    Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-acting riboswitch control of translation initiation and mRNA decay.
    Caron MP; Bastet L; Lussier A; Simoneau-Roy M; Massé E; Lafontaine DA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3444-53. PubMed ID: 23169642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ
    Neuner E; Frener M; Lusser A; Micura R
    RNA Biol; 2018; 15(10):1376-1383. PubMed ID: 30332908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the cotranscriptional and translational control mechanisms of the Escherichia coli tbpA thiamin pyrophosphate riboswitch.
    Grondin JP; Geffroy M; Simoneau-Roy M; Chauvier A; Turcotte P; St-Pierre P; Dubé A; Moreau J; Massé E; Penedo JC; Lafontaine DA
    Commun Biol; 2024 Oct; 7(1):1345. PubMed ID: 39420148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of gene regulation by the THI-box riboswitch.
    Ontiveros-Palacios N; Smith AM; Grundy FJ; Soberon M; Henkin TM; Miranda-Ríos J
    Mol Microbiol; 2008 Feb; 67(4):793-803. PubMed ID: 18179415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria.
    Dutta D; Belashov IA; Wedekind JE
    Biochemistry; 2018 Aug; 57(31):4620-4628. PubMed ID: 29897738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.