BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35017489)

  • 1. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch.
    Yadav R; Widom JR; Chauvier A; Walter NG
    Nat Commun; 2022 Jan; 13(1):207. PubMed ID: 35017489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch.
    Hertz LM; White EN; Kuznedelov K; Cheng L; Yu AM; Kakkaramadam R; Severinov K; Chen A; Lucks JB
    Nucleic Acids Res; 2024 May; 52(8):4466-4482. PubMed ID: 38567721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the
    Lee J; Sung SE; Lee J; Kang JY; Lee JH; Choi BS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional folding of a riboswitch at nucleotide resolution.
    Watters KE; Strobel EJ; Yu AM; Lis JT; Lucks JB
    Nat Struct Mol Biol; 2016 Dec; 23(12):1124-1131. PubMed ID: 27798597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch.
    Ren A; Rajashankar KR; Patel DJ
    Nature; 2012 May; 486(7401):85-9. PubMed ID: 22678284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.
    Roy S; Onuchic JN; Sanbonmatsu KY
    Biophys J; 2017 Jul; 113(2):348-359. PubMed ID: 28746845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection.
    Suddala KC; Wang J; Hou Q; Walter NG
    J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing excited conformational states of nucleic acids by nitrogen CEST NMR spectroscopy.
    Zhao B; Baisden JT; Zhang Q
    J Magn Reson; 2020 Jan; 310():106642. PubMed ID: 31785475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration.
    Chauvier A; Dandpat SS; Romero R; Walter NG
    Nat Commun; 2024 May; 15(1):3955. PubMed ID: 38729929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An excited state underlies gene regulation of a transcriptional riboswitch.
    Zhao B; Guffy SL; Williams B; Zhang Q
    Nat Chem Biol; 2017 Sep; 13(9):968-974. PubMed ID: 28719589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local-to-global signal transduction at the core of a Mn
    Suddala KC; Price IR; Dandpat SS; Janeček M; Kührová P; Šponer J; Banáš P; Ke A; Walter NG
    Nat Commun; 2019 Sep; 10(1):4304. PubMed ID: 31541094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread genetic switches and toxicity resistance proteins for fluoride.
    Baker JL; Sudarsan N; Weinberg Z; Roth A; Stockbridge RB; Breaker RR
    Science; 2012 Jan; 335(6065):233-235. PubMed ID: 22194412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing.
    Widom JR; Nedialkov YA; Rai V; Hayes RL; Brooks CL; Artsimovitch I; Walter NG
    Mol Cell; 2018 Nov; 72(3):541-552.e6. PubMed ID: 30388413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation.
    Chauvier A; Ajmera P; Yadav R; Walter NG
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Fluoride Ion Encapsulation by Magnesium Ions in a Bacterial Riboswitch.
    Kumar S; Reddy G
    J Phys Chem B; 2023 Nov; 127(43):9267-9281. PubMed ID: 37851949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-state mechanism couples ligand and temperature sensing in riboswitches.
    Reining A; Nozinovic S; Schlepckow K; Buhr F; Fürtig B; Schwalbe H
    Nature; 2013 Jul; 499(7458):355-9. PubMed ID: 23842498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.