These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35017489)

  • 21. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator.
    Hollands K; Sevostiyanova A; Groisman EA
    Proc Natl Acad Sci U S A; 2014 May; 111(19):E1999-2007. PubMed ID: 24778260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Molecule FRET Kinetics of the Mn
    Sung HL; Nesbitt DJ
    J Phys Chem B; 2019 Mar; 123(9):2005-2015. PubMed ID: 30739441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
    Wakeman CA; Ramesh A; Winkler WC
    J Mol Biol; 2009 Sep; 392(3):723-35. PubMed ID: 19619558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical mechanism of amino acid sensing by the T-box riboswitch.
    Suddala KC; Cabello-Villegas J; Michnicka M; Marshall C; Nikonowicz EP; Walter NG
    Nat Commun; 2018 May; 9(1):1896. PubMed ID: 29760498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A magnesium-induced triplex pre-organizes the SAM-II riboswitch.
    Roy S; Lammert H; Hayes RL; Chen B; LeBlanc R; Dayie TK; Onuchic JN; Sanbonmatsu KY
    PLoS Comput Biol; 2017 Mar; 13(3):e1005406. PubMed ID: 28248966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
    Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE
    Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct observation of hierarchical folding in single riboswitch aptamers.
    Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM
    Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.
    Kesherwani M; N H V K; Velmurugan D
    J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
    Price IR; Gaballa A; Ding F; Helmann JD; Ke A
    Mol Cell; 2015 Mar; 57(6):1110-1123. PubMed ID: 25794619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding.
    Wood S; Ferré-D'Amaré AR; Rueda D
    ACS Chem Biol; 2012 May; 7(5):920-7. PubMed ID: 22380737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics of folding a pseudoknotted mRNA fragment.
    Gluick TC; Draper DE
    J Mol Biol; 1994 Aug; 241(2):246-62. PubMed ID: 7520082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Pseudoknot Base Pairing on Cotranscriptional Structural Switching of the Fluoride Riboswitch.
    Hertz LM; White EN; Kuznedelov K; Cheng L; Yu AM; Kakkaramadam R; Severinov K; Chen A; Lucks JB
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.