These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35017492)

  • 1. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing.
    Chi C; An M; Qi X; Li Y; Zhang R; Liu G; Lin C; Huang H; Dang H; Demir B; Wang Y; Ma W; Huang B; Zhang X
    Nat Commun; 2022 Jan; 13(1):221. PubMed ID: 35017492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Flexible Thermal Sensor Arrays based on High-Thermopower Ionic Thermoelectric Hydrogel.
    Han Y; Wei H; Du Y; Li Z; Feng SP; Huang B; Xu D
    Adv Sci (Weinh); 2023 Sep; 10(25):e2302685. PubMed ID: 37395372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping.
    Liu S; Yang Y; Huang H; Zheng J; Liu G; To TH; Huang B
    Sci Adv; 2022 Jan; 8(1):eabj3019. PubMed ID: 34985956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation.
    Chi C; Liu G; An M; Zhang Y; Song D; Qi X; Zhao C; Wang Z; Du Y; Lin Z; Lu Y; Huang H; Li Y; Lin C; Ma W; Huang B; Du X; Zhang X
    Nat Commun; 2023 Jan; 14(1):306. PubMed ID: 36658195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Negative Thermopower Enabled by Bidirectionally Anchored Cations in Multifunctional Polymers.
    Chen B; Zhang X; Yang J; Feng J; Wang T
    ACS Appl Mater Interfaces; 2023 May; 15(20):24483-24493. PubMed ID: 37161282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Thermopower of Hydrogen Ion Enhanced by a Strong Hydrogen Bond System.
    Chen Q; Chen B; Xiao S; Feng J; Yang J; Yue Q; Zhang X; Wang T
    ACS Appl Mater Interfaces; 2022 May; 14(17):19304-19314. PubMed ID: 35468291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional n-type thermoelectric ionogels enabled by metal coordination and ion-selective association.
    Zhao W; Zheng Y; Jiang M; Sun T; Huang A; Wang L; Jiang W; Zhang Q
    Sci Adv; 2023 Oct; 9(43):eadk2098. PubMed ID: 37878706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Healable and Stretchable Ionic-Liquid-Based Thermoelectric Composites with High Ionic Seebeck Coefficient.
    Akbar ZA; Malik YT; Kim DH; Cho S; Jang SY; Jeon JW
    Small; 2022 Apr; 18(17):e2106937. PubMed ID: 35344267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion.
    Cheng H; Ouyang J
    J Phys Chem Lett; 2022 Nov; 13(46):10830-10842. PubMed ID: 36382894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions.
    Chen B; Chen Q; Xiao S; Feng J; Zhang X; Wang T
    Sci Adv; 2021 Nov; 7(48):eabi7233. PubMed ID: 34818039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Bacterial Cellulose Ionic Conductors with Gigantic Thermopower for Low-Grade Heat Harvesting.
    Wu Z; Wang B; Li J; Wu R; Jin M; Zhao H; Chen S; Wang H
    Nano Lett; 2022 Oct; 22(20):8152-8160. PubMed ID: 36219168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density.
    He Y; Li S; Chen R; Liu X; Odunmbaku GO; Fang W; Lin X; Ou Z; Gou Q; Wang J; Ouedraogo NAN; Li J; Li M; Li C; Zheng Y; Chen S; Zhou Y; Sun K
    Nanomicro Lett; 2023 Apr; 15(1):101. PubMed ID: 37052861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Ionic Hydrogel with Outstanding Heat-to-Electrical Performance for Low-Grade Heat Harvesting.
    Zhou Y; Dong Z; He Y; Zhu W; Yuan Y; Zeng H; Li C; Chen S; Sun K
    Chem Asian J; 2022 Nov; 17(22):e202200850. PubMed ID: 36074542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin-Deep Aspect of Thermopower in Bi
    Lee C; Park T; Shim JH; Whangbo MH
    Acc Chem Res; 2022 Oct; 55(19):2811-2820. PubMed ID: 36129235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant thermopower of ionic gelatin near room temperature.
    Han CG; Qian X; Li Q; Deng B; Zhu Y; Han Z; Zhang W; Wang W; Feng SP; Chen G; Liu W
    Science; 2020 Jun; 368(6495):1091-1098. PubMed ID: 32354840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials.
    Zhao M; Kim D; Lee YH; Yang H; Cho S
    Adv Mater; 2023 Jul; 35(27):e2106871. PubMed ID: 34889480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing Thermoelectric Puddles
    Zhao M; Kim D; Lee Y; Ling N; Zheng S; Lee YH; Yang H
    ACS Nano; 2021 Mar; 15(3):5397-5404. PubMed ID: 33660977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Thermoelectric Properties of a Conducting Polymer through Blending with Open-Shell Molecular Dopants.
    Tomlinson EP; Willmore MJ; Zhu X; Hilsmier SW; Boudouris BW
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18195-200. PubMed ID: 26263124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting.
    Hu Y; Chen M; Qin C; Zhang J; Lu A
    Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Printed Flexible Hygro-Thermoelectric Paper Generator.
    Shen H; Xu K; Duan Y; Wu P; Qian Z; Chen Y; Luo Y; Liu C; Li Y; Cui J; Liu D
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206483. PubMed ID: 36683182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.