These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35017571)

  • 41. Cytochalasans with Inhibitory Activity against NPC1L1 from the Endophytic Fungus
    Gu CC; Zeng J; Peng XP; Sun YJ; Yuan SZ; Wang XN; Zhang RS; Lou HX; Li G
    J Org Chem; 2023 Mar; 88(5):3185-3192. PubMed ID: 36812072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes.
    Sutcliffe MJ; Scrutton NS
    Eur J Biochem; 2002 Jul; 269(13):3096-102. PubMed ID: 12084049
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products.
    Tsunematsu Y; Ishiuchi K; Hotta K; Watanabe K
    Nat Prod Rep; 2013 Aug; 30(8):1139-49. PubMed ID: 23824111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 6-S-cysteinylation of bi-covalently attached FAD in berberine bridge enzyme tunes the redox potential for optimal activity.
    Winkler A; Kutchan TM; Macheroux P
    J Biol Chem; 2007 Aug; 282(33):24437-43. PubMed ID: 17573342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Periconiasins A-C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp.
    Zhang D; Ge H; Xie D; Chen R; Zou JH; Tao X; Dai J
    Org Lett; 2013 Apr; 15(7):1674-7. PubMed ID: 23506233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced production of aspochalasin D through genetic engineering of Aspergillus flavipes.
    Yang Z; Liu H; Su Z; Xu H; Yuan Z; Rao Y
    Appl Microbiol Biotechnol; 2023 May; 107(9):2911-2920. PubMed ID: 37004567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of codon optimization, N-terminal truncation and gene dose on the heterologous expression of berberine bridge enzyme.
    Xu Z; Xia L; Sun M; Huang P; Zeng J
    World J Microbiol Biotechnol; 2022 Mar; 38(5):77. PubMed ID: 35316417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Michael additions in polyketide biosynthesis.
    Miyanaga A
    Nat Prod Rep; 2019 Mar; 36(3):531-547. PubMed ID: 30311933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of aspochalasin H, a new member of the aspochalasin family.
    Tomikawa T; Shin-Ya K; Seto H; Okusa N; Kajiura T; Hayakawa Y
    J Antibiot (Tokyo); 2002 Jul; 55(7):666-8. PubMed ID: 12243459
    [No Abstract]   [Full Text] [Related]  

  • 50. Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans.
    Zheng CJ; Shao CL; Wu LY; Chen M; Wang KL; Zhao DL; Sun XP; Chen GY; Wang CY
    Mar Drugs; 2013 Jun; 11(6):2054-68. PubMed ID: 23752358
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production.
    Gao L; Cai M; Shen W; Xiao S; Zhou X; Zhang Y
    Microb Cell Fact; 2013 Sep; 12():77. PubMed ID: 24011431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterologous expression of the plant proteins strictosidine synthase and berberine bridge enzyme in insect cell culture.
    Kutchan TM; Bock A; Dittrich H
    Phytochemistry; 1994 Jan; 35(2):353-60. PubMed ID: 7764480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunocytological localization of two enzymes involved in berberine biosynthesis.
    Bock A; Wanner G; Zenk MH
    Planta; 2002 Nov; 216(1):57-63. PubMed ID: 12430014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Secreted BBE-Like Enzyme Acting as a Drug-Binding Efflux Carrier Confers Microbial Self-Resistance to Mitomycin C.
    Chen X; He R; Sun A; Pu J; Pan HX; Tang GL
    Org Lett; 2024 Feb; 26(6):1233-1237. PubMed ID: 38308850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular and Computational Bases for Spirofuranone Formation in Setosusin Biosynthesis.
    Wei X; Matsuyama T; Sato H; Yan D; Chan PM; Miyamoto K; Uchiyama M; Matsuda Y
    J Am Chem Soc; 2021 Oct; 143(42):17708-17715. PubMed ID: 34644070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeted Gene Inactivations Expose Silent Cytochalasans in Magnaporthe grisea NI980.
    Wang C; Hantke V; Cox RJ; Skellam E
    Org Lett; 2019 Jun; 21(11):4163-4167. PubMed ID: 31099577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes.
    Campbell CD; Vederas JC
    Biopolymers; 2010 Sep; 93(9):755-63. PubMed ID: 20577995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aspochalamins A-D and aspochalasin Z produced by the endosymbiotic Fungus Aspergillus niveus LU 9575. II. Structure elucidation.
    Holtzel A; Schmid DG; Nicholson GJ; Krastel P; Zeeck A; Gebhardt K; Fiedler HP; Jung G
    J Antibiot (Tokyo); 2004 Nov; 57(11):715-20. PubMed ID: 15712665
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides.
    Li J; Neubauer P
    N Biotechnol; 2014 Dec; 31(6):579-85. PubMed ID: 24704144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella.
    Wagenaar MM; Corwin J; Strobel G; Clardy J
    J Nat Prod; 2000 Dec; 63(12):1692-5. PubMed ID: 11141120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.