These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35017613)

  • 1. Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes.
    Moreno AD; González-Fernández C; Tomás-Pejó E
    Sci Rep; 2022 Jan; 12(1):557. PubMed ID: 35017613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.
    Tomás-Pejó E; Ballesteros M; Oliva JM; Olsson L
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1211-20. PubMed ID: 20585830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.
    Moreno AD; Carbone A; Pavone R; Olsson L; Geijer C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1405-1416. PubMed ID: 30498977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
    Olofsson K; Rudolf A; Lidén G
    J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054.
    Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G
    Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.
    Ko JK; Um Y; Lee SM
    Bioresour Technol; 2016 Dec; 222():422-430. PubMed ID: 27744166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae.
    Papapetridis I; Verhoeven MD; Wiersma SJ; Goudriaan M; van Maris AJA; Pronk JT
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29771304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation.
    Carrasco C; Baudel H; Peñarrieta M; Solano C; Tejeda L; Roslander C; Galbe M; Lidén G
    J Biosci Bioeng; 2011 Feb; 111(2):167-74. PubMed ID: 21081285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the fermentation performance of Saccharomyces cerevisiae by laccase during ethanol production from steam-exploded wheat straw at high-substrate loadings.
    Alvira P; Moreno AD; Ibarra D; Sáez F; Ballesteros M
    Biotechnol Prog; 2013; 29(1):74-82. PubMed ID: 23143932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase.
    Smith J; van Rensburg E; Görgens JF
    BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward high solids loading process for lignocellulosic biofuel production at a low cost.
    Jin M; Sarks C; Bals BD; Posawatz N; Gunawan C; Dale BE; Balan V
    Biotechnol Bioeng; 2017 May; 114(5):980-989. PubMed ID: 27888662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation.
    Moreno AD; Tomás-Pejó E; Ibarra D; Ballesteros M; Olsson L
    Biotechnol Biofuels; 2013 Nov; 6(1):160. PubMed ID: 24219973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.