These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35018400)

  • 41. Facile fabrication of micro-grooves based photonic crystals towards anisotropic angle-independent structural colors and polarized multiple reflections.
    Liu C; Long Y; Yang B; Yang G; Tung CH; Song K
    Sci Bull (Beijing); 2017 Jul; 62(13):938-942. PubMed ID: 36659464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental measurement of the photonic properties of icosahedral quasicrystals.
    Man W; Megens M; Steinhardt PJ; Chaikin PM
    Nature; 2005 Aug; 436(7053):993-6. PubMed ID: 16107842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directional study of the optical properties of Tb3+- and Eu3+-doped nanoparticles embedded in silica photonic crystals.
    Bovero E; Yano K; Nakamura T; Yamada Y; van Veggel FC
    Chemphyschem; 2010 Aug; 11(12):2550-4. PubMed ID: 20661991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging single quantum dots in three-dimensional photonic crystals.
    Barth M; Schuster R; Gruber A; Cichos F
    Phys Rev Lett; 2006 Jun; 96(24):243902. PubMed ID: 16907242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design principles for photonic crystals based on plasmonic nanoparticle superlattices.
    Sun L; Lin H; Kohlstedt KL; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7242-7247. PubMed ID: 29941604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microwave-assisted self-organization of colloidal particles in confining aqueous droplets.
    Kim SH; Lee SY; Yi GR; Pine DJ; Yang SM
    J Am Chem Soc; 2006 Aug; 128(33):10897-904. PubMed ID: 16910685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.
    Baghdasaryan T; Geernaert T; Chah K; Caucheteur C; Schuster K; Kobelke J; Thienpont H; Berghmans F
    Sci Rep; 2018 Apr; 8(1):5470. PubMed ID: 29615768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Holographic design and band gap evolution of photonic crystals formed with five-beam symmetric umbrella configuration.
    Dong GY; Cai LZ; Yang XL; Shen XX; Meng XF; Xu XF; Wang YR
    Opt Express; 2006 Sep; 14(18):8096-102. PubMed ID: 19529181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Self-assembled multi-layer simple cubic photonic crystals of oppositely charged colloids in confinement.
    Sankaewtong K; Lei QL; Ni R
    Soft Matter; 2019 Apr; 15(15):3104-3110. PubMed ID: 30810154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-contrast infrared polymer photonic crystals fabricated by direct laser writing.
    Li Y; Fullager DB; Park S; Childers D; Fesperman R; Boreman G; Hofmann T
    Opt Lett; 2018 Oct; 43(19):4711-4714. PubMed ID: 30272721
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Holographic fabrication of octagon graded photonic supercrystal and potential applications in topological photonics.
    Sale O; Hassan S; Hurley N; Alnasser K; Philipose U; Zhang H; Lin Y
    Front Optoelectron; 2020 Mar; 13(1):12-17. PubMed ID: 36641582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres.
    Tuyen le D; Lin JH; Wu CY; Tai PT; Tang J; Minh le Q; Kan HC; Hsu CC
    Opt Express; 2012 Jul; 20(14):15418-26. PubMed ID: 22772238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks.
    Sheng Q; Mao W; Han L; Che S
    Chemistry; 2018 Nov; 24(66):17389-17396. PubMed ID: 29806874
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-chip natural assembly of silicon photonic bandgap crystals.
    Vlasov YA; Bo XZ; Sturm JC; Norris DJ
    Nature; 2001 Nov; 414(6861):289-93. PubMed ID: 11713524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manipulation of photons at the surface of three-dimensional photonic crystals.
    Ishizaki K; Noda S
    Nature; 2009 Jul; 460(7253):367-70. PubMed ID: 19606144
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.
    Leistikow MD; Mosk AP; Yeganegi E; Huisman SR; Lagendijk A; Vos WL
    Phys Rev Lett; 2011 Nov; 107(19):193903. PubMed ID: 22181609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.
    Tolmachev V; Perova T; Moore R
    Opt Express; 2005 Oct; 13(21):8433-41. PubMed ID: 19498873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering a light-emitting planar defect within three-dimensional photonic crystals.
    Liu G; Chen Y; Ye Z
    Sci Technol Adv Mater; 2009 Oct; 10(5):055001. PubMed ID: 27877309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients.
    Lowell D; Hassan S; Sale O; Adewole M; Hurley N; Philipose U; Chen B; Lin Y
    Appl Opt; 2018 Aug; 57(22):6598-6604. PubMed ID: 30117901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.