These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 35018403)
1. Lattice distortion of crystalline-amorphous nickel molybdenum sulfide nanosheets for high-efficiency overall water splitting: libraries of lone pairs of electrons and Shi Z; Yu Z; Guo J; Jiang R; Hou Y; Chen Y; Chen H; Wang M; Pang H; Tang W Nanoscale; 2022 Jan; 14(4):1370-1379. PubMed ID: 35018403 [TBL] [Abstract][Full Text] [Related]
2. Cobalt Sulfide/Nickel Sulfide Heterostructure Directly Grown on Nickel Foam: An Efficient and Durable Electrocatalyst for Overall Water Splitting Application. Shit S; Chhetri S; Jang W; Murmu NC; Koo H; Samanta P; Kuila T ACS Appl Mater Interfaces; 2018 Aug; 10(33):27712-27722. PubMed ID: 30044090 [TBL] [Abstract][Full Text] [Related]
3. "Lewis Base-Hungry" Amorphous-Crystalline Nickel Borate-Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting. Sun Z; Wang X; Yuan M; Yang H; Su Y; Shi K; Nan C; Li H; Sun G; Zhu J; Yang X; Chen S ACS Appl Mater Interfaces; 2020 May; 12(21):23896-23903. PubMed ID: 32362112 [TBL] [Abstract][Full Text] [Related]
4. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting. Wang Y; Zhang B; Pan W; Ma H; Zhang J ChemSusChem; 2017 Nov; 10(21):4170-4177. PubMed ID: 28857449 [TBL] [Abstract][Full Text] [Related]
5. Molybdenum and Vanadium-Codoped Cobalt Carbonate Nanosheets Deposited on Nickel Foam as a High-Efficient Bifunctional Catalyst for Overall Alkaline Water Splitting. Wang W; Xu L; Ye R; Yang P; Zhu J; Jiang L; Wu X Molecules; 2024 Jul; 29(15):. PubMed ID: 39124995 [TBL] [Abstract][Full Text] [Related]
6. Bimetallic copper nickel sulfide electrocatalyst by one step chemical bath deposition for efficient and stable overall water splitting applications. Chinnadurai D; Rajendiran R; Kandasamy P J Colloid Interface Sci; 2022 Jan; 606(Pt 1):101-112. PubMed ID: 34388564 [TBL] [Abstract][Full Text] [Related]
7. Surface reconstruction of RuO Su Q; Sheng R; Liu Q; Ding J; Wang P; Wang X; Wang J; Wang Y; Wang B; Huang Y J Colloid Interface Sci; 2024 Mar; 658():43-51. PubMed ID: 38096678 [TBL] [Abstract][Full Text] [Related]
8. Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO Yang M; Zhao M; Yuan J; Luo J; Zhang J; Lu Z; Chen D; Fu X; Wang L; Liu C Small; 2022 Apr; 18(14):e2106554. PubMed ID: 35150071 [TBL] [Abstract][Full Text] [Related]
9. Interface engineering of Mo-doped Ni Wang L; Xue X; Luan Q; Guo J; Chu L; Wang Z; Li B; Yang M; Wang G J Colloid Interface Sci; 2023 Mar; 634():563-574. PubMed ID: 36549205 [TBL] [Abstract][Full Text] [Related]
10. Crystalline/amorphous composite interface of CoP@Ni/Fe-P as a boosted electrocatalyst for full water splitting. Yu L; Wu P; Tian T; He X; Fan M; Cui L Dalton Trans; 2023 Aug; 52(34):11941-11948. PubMed ID: 37575068 [TBL] [Abstract][Full Text] [Related]
11. Unleashing the room temperature boronization: Blooming of Ni-ZIF nanobuds for efficient photo/electro catalysis of water. John G; Priyadarshini S; Babu A; Mohan H; Oh BT; Navaneethan M; Jesuraj PJ Chemosphere; 2024 Jan; 346():140574. PubMed ID: 37926164 [TBL] [Abstract][Full Text] [Related]
12. Vertical Growth of 2D Amorphous FePO Yang L; Guo Z; Huang J; Xi Y; Gao R; Su G; Wang W; Cao L; Dong B Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29068533 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous Ni Yang Y; Meng H; Kong C; Yan S; Ma W; Zhu H; Ma F; Wang C; Hu Z J Colloid Interface Sci; 2021 Oct; 599():300-312. PubMed ID: 33957423 [TBL] [Abstract][Full Text] [Related]
14. Amorphous Mo-doped NiS Wang Y; Li X; Huang Z; Wang H; Chen Z; Zhang J; Zheng X; Deng Y; Hu W Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202215256. PubMed ID: 36461715 [TBL] [Abstract][Full Text] [Related]
15. Nitriding-reduction fabrication of coralloid CoN/Ni/NiO for efficient electrocatalytic overall water splitting. Wang D; Zhang C; Hu J; Zhuang T; Lv Z J Colloid Interface Sci; 2024 Feb; 655():217-225. PubMed ID: 37939405 [TBL] [Abstract][Full Text] [Related]
16. Alkali-Induced In Situ Formation of Amorphous Ni Cheng Y; Yin Z; Ma WM; He ZX; Yao X; Lv WY Inorg Chem; 2022 Feb; 61(7):3327-3336. PubMed ID: 35138829 [TBL] [Abstract][Full Text] [Related]
17. Electrodeposition synthesis of cobalt-molybdenum bimetallic phosphide on nickel foam for efficient water splitting. Guo D; Wen L; Wang T; Li X J Colloid Interface Sci; 2024 Apr; 659():707-717. PubMed ID: 38211488 [TBL] [Abstract][Full Text] [Related]
18. Djurleite Copper Sulfide-Coupled Cobalt Sulfide Interface for a Stable and Efficient Electrocatalyst. Manivelan N; Karuppanan S; Prabakar K ACS Appl Mater Interfaces; 2022 Jul; 14(27):30812-30823. PubMed ID: 35762731 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical surface reconstruction of Prussian blue-modified nickel sulfide to form iron-nickel bilayer hydroxyl oxides for efficient and stable oxygen evolution reaction processes. Qin X; Luo J; Yu Z; Qin Z; Jiang R; Yao S; Huang J; Hou Y; Pang H; Sun P J Colloid Interface Sci; 2023 Dec; 652(Pt A):23-33. PubMed ID: 37591080 [TBL] [Abstract][Full Text] [Related]
20. Sulfur defect rich Mo-Ni Chen H; Yu Z; Jiang R; Huang J; Hou Y; Zhang Y; Zhu H; Wang B; Wang M; Tang W Nanoscale; 2021 Apr; 13(13):6644-6653. PubMed ID: 33885543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]