BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35018467)

  • 1. Ribosomal leaky scanning through a translated uORF requires eIF4G2.
    Smirnova VV; Shestakova ED; Nogina DS; Mishchenko PA; Prikazchikova TA; Zatsepin TS; Kulakovskiy IV; Shatsky IN; Terenin IM
    Nucleic Acids Res; 2022 Jan; 50(2):1111-1127. PubMed ID: 35018467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Roles of eIF4G2 in Leaky Scanning and Reinitiation on the Human Dual-Coding POLG mRNA.
    Shestakova ED; Tumbinsky RS; Andreev DE; Rozov FN; Shatsky IN; Terenin IM
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38138978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story.
    Shestakova ED; Smirnova VV; Shatsky IN; Terenin IM
    RNA; 2023 Mar; 29(3):282-299. PubMed ID: 36517212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation.
    Haimov O; Sehrawat U; Tamarkin-Ben Harush A; Bahat A; Uzonyi A; Will A; Hiraishi H; Asano K; Dikstein R
    Mol Cell Biol; 2018 Sep; 38(18):. PubMed ID: 29987188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DAP5 drives translation of specific mRNA targets with upstream ORFs in human embryonic stem cells.
    David M; Olender T; Mizrahi O; Weingarten-Gabbay S; Friedlander G; Meril S; Goldberg N; Savidor A; Levin Y; Salomon V; Stern-Ginossar N; Bialik S; Kimchi A
    RNA; 2022 Oct; 28(10):1325-1336. PubMed ID: 35961752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRRC2 proteins impact translation initiation by promoting leaky scanning.
    Bohlen J; Roiuk M; Neff M; Teleman AA
    Nucleic Acids Res; 2023 Apr; 51(7):3391-3409. PubMed ID: 36869665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paralogous translation factors target distinct mRNAs to differentially regulate tolerance to oxidative stress in yeast.
    Cunningham J; Sfakianos AP; Kritsiligkou P; Kershaw CJ; Whitmarsh AJ; Hubbard SJ; Ashe MP; Grant CM
    Nucleic Acids Res; 2023 Sep; 51(16):8820-8835. PubMed ID: 37449412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells.
    Bohlen J; Fenzl K; Kramer G; Bukau B; Teleman AA
    Mol Cell; 2020 Aug; 79(4):561-574.e5. PubMed ID: 32589966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal activity rapidly reprograms dendritic translation via eIF4G2:uORF binding.
    Hacisuleyman E; Hale CR; Noble N; Luo JD; Fak JJ; Saito M; Chen J; Weissman JS; Darnell RB
    Nat Neurosci; 2024 May; 27(5):822-835. PubMed ID: 38589584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells.
    Sugiyama H; Takahashi K; Yamamoto T; Iwasaki M; Narita M; Nakamura M; Rand TA; Nakagawa M; Watanabe A; Yamanaka S
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):340-345. PubMed ID: 28003464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop.
    Smirnova VV; Shestakova ED; Bikmetov DV; Chugunova AA; Osterman IA; Serebryakova MV; Sergeeva OV; Zatsepin TS; Shatsky IN; Terenin IM
    RNA; 2019 Jul; 25(7):757-767. PubMed ID: 31010886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DAP5 enables main ORF translation on mRNAs with structured and uORF-containing 5' leaders.
    Weber R; Kleemann L; Hirschberg I; Chung MY; Valkov E; Igreja C
    Nat Commun; 2022 Dec; 13(1):7510. PubMed ID: 36473845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation.
    Liu Y; Cui J; Hoffman AR; Hu JF
    Cell Prolif; 2023 Mar; 56(3):e13367. PubMed ID: 36547008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational buffering by ribosome stalling in upstream open reading frames.
    Bottorff TA; Park H; Geballe AP; Subramaniam AR
    PLoS Genet; 2022 Oct; 18(10):e1010460. PubMed ID: 36315596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response.
    Andreev DE; Arnold M; Kiniry SJ; Loughran G; Michel AM; Rachinskii D; Baranov PV
    Elife; 2018 Jun; 7():. PubMed ID: 29932418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations.
    Weiss B; Dikstein R
    Cell Rep; 2024 May; 43(5):114126. PubMed ID: 38630588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A widespread alternate form of cap-dependent mRNA translation initiation.
    de la Parra C; Ernlund A; Alard A; Ruggles K; Ueberheide B; Schneider RJ
    Nat Commun; 2018 Aug; 9(1):3068. PubMed ID: 30076308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss-of-function analysis reveals distinct requirements of the translation initiation factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila spermatogenesis.
    Ghosh S; Lasko P
    PLoS One; 2015; 10(4):e0122519. PubMed ID: 25849588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss-of-function cancer-linked mutations in the EIF4G2 non-canonical translation initiation factor.
    Meril S; Bahlsen M; Eisenstein M; Savidor A; Levin Y; Bialik S; Pietrokovski S; Kimchi A
    Life Sci Alliance; 2024 Mar; 7(3):. PubMed ID: 38129098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.