BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35018902)

  • 1. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries
    Ouyang J; Sun L; Zeng F; Wu S
    Analyst; 2022 Jan; 147(3):410-416. PubMed ID: 35018902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal-Clearable Probe with Water Solubility and Photostability for Biomarker-Activatable Detection of Acute Kidney Injuries via NIR-II Fluorescence and Optoacoustic Imaging.
    Zeng C; Tan Y; Sun L; Long Y; Zeng F; Wu S
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17664-17674. PubMed ID: 37011134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An activatable probe for detection and therapy of food-additive-related hepatic injury via NIR-II fluorescence/optoacoustic imaging and biomarker-triggered drug release.
    Zeng C; Ouyang J; Sun L; Zeng Z; Tan Y; Zeng F; Wu S
    Anal Chim Acta; 2022 May; 1208():339831. PubMed ID: 35525589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homo-Dyad with Outer Hydration Layer Approach for Developing NIR-II Chromophore of High Stability and Water-Solubility as Injectable and Sprayable Optical Probe.
    She Z; Li R; Zeng F; Wu S
    Adv Healthc Mater; 2024 Apr; ():e2400791. PubMed ID: 38588220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging.
    Li DH; Gamage RS; Oliver AG; Patel NL; Muhammad Usama S; Kalen JD; Schnermann MJ; Smith BD
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305062. PubMed ID: 37163228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A firm-push-to-open and light-push-to-lock strategy for a general chemical platform to develop activatable dual-modality NIR-II probes.
    Shen L; Li J; Wen C; Wang H; Liu N; Su X; Chen J; Li X
    Sci Adv; 2024 Jun; 10(24):eado2037. PubMed ID: 38875326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing.
    Qin Z; Ren TB; Zhou H; Zhang X; He L; Li Z; Zhang XB; Yuan L
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202201541. PubMed ID: 35218130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxynitrite Activatable NIR-II Fluorescent Molecular Probe for Drug-Induced Hepatotoxicity Monitoring.
    Li D; Wang S; Lei Z; Sun C; El-Toni AM; Alhoshan MS; Fan Y; Zhang F
    Anal Chem; 2019 Apr; 91(7):4771-4779. PubMed ID: 30808169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A H
    Chen J; Chen L; Wu Y; Fang Y; Zeng F; Wu S; Zhao Y
    Nat Commun; 2021 Nov; 12(1):6870. PubMed ID: 34824274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic.
    Leitão MM; de Melo-Diogo D; Alves CG; Lima-Sousa R; Correia IJ
    Adv Healthc Mater; 2020 Mar; 9(6):e1901665. PubMed ID: 31994354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and effective "capping" approach to readily tune the fluorescence of near-infrared cyanines.
    He L; Lin W; Xu Q; Ren M; Wei H; Wang JY
    Chem Sci; 2015 Aug; 6(8):4530-4536. PubMed ID: 28717473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activatable BODIPY-chromene NIR-II probes with small spectral crosstalk enable high-contrast
    Zhang L; Yan C; Zhang Y; Ma D; Huang J; Zhao Z; Tao Y; Liu C; Li J; Zhu WH; Guo Z
    Chem Commun (Camb); 2023 Jul; 59(54):8388-8391. PubMed ID: 37305995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Monitoring Renal Impairment Due to Drug-Induced AKI and Diabetes-Caused CKD Using an NAG-Activatable NIR-II Nanoprobe.
    Tan J; Yin K; Ouyang Z; Wang R; Pan H; Wang Z; Zhao C; Guo W; Gu X
    Anal Chem; 2021 Dec; 93(48):16158-16165. PubMed ID: 34813273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly.
    Yan R; Hu Y; Liu F; Wei S; Fang D; Shuhendler AJ; Liu H; Chen HY; Ye D
    J Am Chem Soc; 2019 Jul; 141(26):10331-10341. PubMed ID: 31244188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A General Strategy for Development of Activatable NIR-II Fluorescent Probes for In Vivo High-Contrast Bioimaging.
    Ren TB; Wang ZY; Xiang Z; Lu P; Lai HH; Yuan L; Zhang XB; Tan W
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):800-805. PubMed ID: 32918358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioorthogonally activatable cyanine dye with torsion-induced disaggregation for in vivo tumor imaging.
    Zhang X; Gao J; Tang Y; Yu J; Liew SS; Qiao C; Cao Y; Liu G; Fan H; Xia Y; Tian J; Pu K; Wang Z
    Nat Commun; 2022 Jun; 13(1):3513. PubMed ID: 35717407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomarker-responsive nanoprobe for detecting hepatic ischemia-reperfusion injury
    Zeng Z; Chen J; Sun L; Zeng F; Wu S
    Chem Commun (Camb); 2023 Jan; 59(5):571-574. PubMed ID: 36537537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery.
    Gorka AP; Nani RR; Schnermann MJ
    Acc Chem Res; 2018 Dec; 51(12):3226-3235. PubMed ID: 30418020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm.
    Deng G; Li S; Sun Z; Li W; Zhou L; Zhang J; Gong P; Cai L
    Theranostics; 2018; 8(15):4116-4128. PubMed ID: 30128040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enlarging the Stokes Shift by Weakening the π-Conjugation of Cyanines for High Signal-to-Noise Ratiometric Imaging.
    Yue Y; Zhao T; Xu Z; Chi W; Chai X; Ai J; Zhang J; Huo F; Strongin RM; Yin C
    Adv Sci (Weinh); 2023 Jan; 10(3):e2205080. PubMed ID: 36424136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.