BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35018940)

  • 1. Structure-affinity relationships of reversible proline analog inhibitors targeting proline dehydrogenase.
    Bogner AN; Tanner JJ
    Org Biomol Chem; 2022 Jan; 20(4):895-905. PubMed ID: 35018940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
    Campbell AC; Becker DF; Gates KS; Tanner JJ
    ACS Chem Biol; 2020 Apr; 15(4):936-944. PubMed ID: 32159324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
    Bogner AN; Ji J; Tanner JJ
    Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 36448708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release.
    Luo M; Arentson BW; Srivastava D; Becker DF; Tanner JJ
    Biochemistry; 2012 Dec; 51(50):10099-108. PubMed ID: 23151026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
    Campbell AC; Prater AR; Bogner AN; Quinn TP; Gates KS; Becker DF; Tanner JJ
    ACS Chem Biol; 2021 Nov; 16(11):2268-2279. PubMed ID: 34542291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
    White TA; Krishnan N; Becker DF; Tanner JJ
    J Biol Chem; 2007 May; 282(19):14316-27. PubMed ID: 17344208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.
    Ostrander EL; Larson JD; Schuermann JP; Tanner JJ
    Biochemistry; 2009 Feb; 48(5):951-9. PubMed ID: 19140736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death.
    Natarajan SK; Zhu W; Liang X; Zhang L; Demers AJ; Zimmerman MC; Simpson MA; Becker DF
    Free Radic Biol Med; 2012 Sep; 53(5):1181-91. PubMed ID: 22796327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition.
    Scott GK; Yau C; Becker BC; Khateeb S; Mahoney S; Jensen MB; Hann B; Cowen BJ; Pegan SD; Benz CC
    Mol Cancer Ther; 2019 Aug; 18(8):1374-1385. PubMed ID: 31189611
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Christensen EM; Bogner AN; Vandekeere A; Tam GS; Patel SM; Becker DF; Fendt SM; Tanner JJ
    J Biol Chem; 2020 Dec; 295(52):18316-18327. PubMed ID: 33109600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Propargylglycine: a unique suicide inhibitor of proline dehydrogenase with anticancer activity and brain-enhancing mitohormesis properties.
    Scott GK; Mahoney S; Scott M; Loureiro A; Lopez-Ramirez A; Tanner JJ; Ellerby LM; Benz CC
    Amino Acids; 2021 Dec; 53(12):1927-1939. PubMed ID: 34089390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Proline Cycle As a Potential Cancer Therapy Target.
    Tanner JJ; Fendt SM; Becker DF
    Biochemistry; 2018 Jun; 57(25):3433-3444. PubMed ID: 29648801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
    Cecchini NM; Monteoliva MI; Alvarez ME
    Plant Physiol; 2011 Apr; 155(4):1947-59. PubMed ID: 21311034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria.
    Schertl P; Cabassa C; Saadallah K; Bordenave M; Savouré A; Braun HP
    FEBS J; 2014 Jun; 281(12):2794-804. PubMed ID: 24751239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.